Toggle light / dark theme

A new robotic system promises to bring the best out of human surgeons by allowing them to use their feet along with their hands during a laparoscopic operation.

Some surgeries are so complex and tiresome that while performing them doctors may wish they could have four arms. Laparoscopy is one such operation, it is used to diagnose and treat various problems in the abdomen and pelvis region.

Every year more than 13 million laparoscopic surgeries are conducted across the globe and it’s one of those medical procedures that put a lot of mental and physical load on surgeons.

These soft-bodied machines are poised to revolutionize confined space tasks and biomedical applications.

Scientists at MIT have achieved a major milestone in robotics by creating tiny soft-bodied robots that can be controlled using a simple magnetic field. These remarkable robots, constructed from flexible magnetic spirals, have the ability to walk, crawl, and even swim, all in response to an easily applicable magnetic force.

Professor Polina Anikeeva, leading the team of researchers behind this innovative creation, expressed her excitement: “This is the first time this has been done, to be able to control three-dimensional locomotion of robots with a one-dimensional magnetic field.”

A new study by researchers at the University of Cambridge reveals a surprising discovery that could transform the future of electrochemical devices. The findings offer new opportunities for the development of advanced materials and improved performance in fields such as energy storage, brain-like computing, and bioelectronics.

Electrochemical devices rely on the movement of charged particles, both ions and electrons, to function properly. However, understanding how these charged particles move together has presented a significant challenge, hindering progress in creating new materials for these devices.

In the rapidly evolving field of bioelectronics, soft conductive materials known as conjugated polymers are used for developing that can be used outside of traditional clinical settings. For example, this type of materials can be used to make wearable sensors that monitor patients’ health remotely or implantable devices that actively treat disease.

There are many different definitions of aging, but scientists generally agree upon some common features: Aging is a time-dependent process that results in increased vulnerability to disease, injury and death. This process is both intrinsic, when your own body causes new problems, and extrinsic, when environmental insults damage your tissues.

Your body is comprised of trillions of cells, and each one is not only responsible for one or more functions specific to the tissue it resides in, but must also do all the work of keeping itself alive. This includes metabolizing nutrients, getting rid of waste, exchanging signals with other cells and adapting to stress.

The trouble is that every single process and component in each of your cells can be interrupted or damaged. So your cells spend a lot of energy each day preventing, recognizing and fixing those problems.

The first endovascular neural interface, the Stentrode™ is a minimally invasive implantable brain device that can interpret signals from the brain for patients with paralysis. Implanted via the jugular vein, the #Stentrode is placed inside the #brain in the command-control center, known as the motor cortex, but without the need for open brain surgery. The signals are captured and sent to a wireless unit implanted in the chest, which sends them to an external receiver. We are building a software suite that enables the patient to learn how to control a computer operating system and set of applications that interact with assistive technologies. This #technology has the potential to enable patients with paralysis to take back digital control of their world, without having to move a muscle.

Synchron is currently preparing for pilot clinical trials of the Stentrode™ to evaluate the safety and efficacy of this breakthrough technology.

Find out more at:
synchronmed.com.
https://twitter.com/synchron_ss

Duke University Science and Technology scholar Trudy Oliver, Ph.D, has made progress with small cell lung cancer by systematically profiling it. For the past 30 years, all patients with the disease have been treated the same, with chemotherapy. In the last handful of years, Oliver and other researchers have shown that they can divide the disease into at least four different subtypes, each of which responds differently to treatment.

Type 1 diabetes (T1D) is an autoimmune disease linked to helper T-cell recognition in non-obese diabetic (NOD) mice and humans. Moreover, T1D affects the endocrine pancreas, thus causing patients to be dependent on insulin replacement therapy for the rest of their lives. Monitoring disease progression through peripheral blood sampling could provide insights into the immune-mediated mechanisms of T1D.

In a recent study published in Science Translational Medicine, researchers profile antigen-specific helper clusters of differentiation 4-positive (CD4+) T-lymphocytes to determine anti-islet autoimmunity among mice and humans.

Research on mu heavy chain knockout mice (MuMt-; Bnull), which are mice that are genetically incapable of producing mature B-cells, has suggested that B-cells amplify the metabolic effects of diseases, especially diabetes and insulin resistance. Since type 2 diabetes (T2D) and hyperthyroidism, both of which are autoimmune conditions, are strongly correlated with PCOS, scientists have attempted to investigate an autoimmune trigger for PCOS, which has remained unsuccessful.

Study findings

In the present study, researchers evaluate previously hypothesized factors associated with cyst formation and inflammation, which include B-cell frequency, hyperandrogenemia, and autoantibodies.