Toggle light / dark theme

Testing the efficacy of a vaccine candidate is typically a long process, with the immune response of an animal model taking around two months.

A multi-institution team, led by Matt DeLisa, the William L. Lewis Professor in the Smith School of Chemical Biomolecular Engineering, at Cornell Engineering, is developing a method that is more than an order of magnitude faster.

Using a biomaterials-based organoid, developed in the lab of former Cornell professor Ankur Singh, now at the Woodruff School of Mechanical Engineering at the Georgia Institute of Technology, the team was able to assess the strength of the immune response in just days.

Plans are already under way to roll it out for the public sector too by the end of the year. With a 2–3 million dose production capacity, a single dose of the two-dose vial is priced at Rs 2,000 currently. Vaccine effective against high risk types of the cancer-causing virus, say oncologists.

The Japanese have created an uncanny AI model that can estimate your true age from the looks of your chest X-ray. It can help doctors in the early detection of chronic disorders.

Have you ever wondered why some people look much older than their chronological age? A new study from Japan’s Osaka Metropolitan University (OMU) suggests this could be a sign of a disease they don’t know yet.

The study authors have developed an AI program that can accurately calculate an individual’s age by reading their chest X-ray. This model estimates age, unlike various previously reported AI programs that examine radiographs to detect lung anomalies. Then researchers use this information to predict body ailments further.

A research team co-led by City University of Hong Kong (CityU) and The University of Hong Kong (HKU) has recently made a significant advancement in spinal cord injury treatment by using genetically-modified human neural stem cells (hNSCs).

They found that specifically modulating a to a certain level in hNSCs can effectively promote the reconstruction of damaged neural circuits and restore locomotor functions, offering great potential for new therapeutic opportunities for patients with spinal cord . The findings were published in the journal Advanced Science under the title “Transplanting Human Neural Stem Cells with ≈50% Reduction of SOX9 Gene Dosage Promotes Tissue Repair and Functional Recovery from Severe Spinal Cord Injury.”

Traumatic spinal cord injury is a devastating condition that commonly results from accidents such as falls, car crashes or sport-related injuries.

What if “looking your age” refers not to your face, but to your chest? Osaka Metropolitan University scientists have developed an advanced artificial intelligence (AI) model that utilizes chest radiographs to accurately estimate a patient’s chronological age. More importantly, when there is a disparity, it can signal a correlation with chronic disease.

These findings mark a leap in , paving the way for improved early disease detection and intervention. The results are published in The Lancet Healthy Longevity.

The research team, led by graduate student Yasuhito Mitsuyama and Dr. Daiju Ueda from the Department of Diagnostic and Interventional Radiology at the Graduate School of Medicine, Osaka Metropolitan University, first constructed a deep learning-based AI model to estimate age from chest radiographs of healthy individuals.

Researchers at the Francis Crick Institute have found that molecules in vegetables like broccoli or cauliflower help to maintain a healthy barrier in the lung and ease infection.

The AHR—aryl hydrocarbon receptor—is a protein found at barrier sites like the gut and the lung. Natural molecules in cruciferous vegetables—for example, kale, cauliflower, broccoli, or cabbage—are dietary ‘ligands’ for AHR, which means, once eaten, they activate AHR to target a number of genes. Some of the genes targeted switch off the AHR system, allowing it to self-regulate.

The effect of AHR on is well understood, but this research, published in Nature, now shows that AHR is also highly active in lining in the lung.

Remember when eggs were so high? A vaccine for birds, now that can make money. 🤔

In the past two years, a viral disease has swept across much of the planet — not Covid but a type of avian flu. It’s devastated the poultry industry in the US, Europe, and elsewhere, sickening millions of farmed birds, which either die from infection or are killed by farmers seeking to stem the spread.


The ongoing outbreak of avian flu has killed hundreds of thousands — if not millions — of wild birds, including endangered species like the California condor. It’s one of the worst wildlife disease outbreaks in history. Having now spread across five continents and hundreds of wildlife species, scientists call the current outbreak a panzootic, meaning a pandemic among animals.

“What we’re seeing right now is uncharted territory,” said Andrew Ramey, a wildlife geneticist at the US Geological Survey, one of the federal agencies involved in testing wild birds for the virus.

Scientists have found that bubbles secreted by embryonic stem cells counter cellular senescence, in large part due to just two tiny snippets of RNA [1].

Extracellular vesicles (EVs) are membrane-bound tiny bubbles that are loaded with various molecular cargo, such as proteins, DNA, or RNA, that cells secrete as a method of intercellular communication. According to numerous studies, EVs can recapitulate many effects of cellular therapies, such as stem cell treatments [2].

In this new study, the researchers used EVs derived from human embryonic stem cells (ESC) against cellular senescence. ESCs are considered a potent therapeutic, tool but, as the study’s authors note in the introduction, their use “is limited by immune rejection, tumorigenicity and ethical issues”. If we could culture ESCs and use EVs secreted by them to the same effect, this would solve many problems.

Researchers have developed a fluorescence microscope that uses structured illumination for fast super-resolution imaging over a wide field of view. The new microscope was designed to image multiple living cells simultaneously with a very high resolution to study the effects of various drugs and mixtures of drugs on the body.

“Polypharmacy—the effect of the many combinations of drugs typically prescribed to the chronically sick or elderly—can lead to dangerous interactions and is becoming a major issue,” said Henning Ortkrass from Bielefeld University in Germany. “We developed this microscope as part of the EIC Pathfinder OpenProject DeLIVERy, which aims to develop a platform that can investigate polypharmacy in individual patients.”

In the journal Optics Express, the researchers describe their new microscope, which uses optical fiber delivery of excitation light to enable very high image quality over a very large field of view with multicolor and high-speed capability. They show that the instrument can be used to image , achieving a field of view up to 150 × 150 μm2 and imaging rates up to 44 Hz while maintaining a spatiotemporal resolution of less than 100 nm.

Stem cells have been used to produce organoids that release the proteins responsible for forming dental enamel, a substance that shields teeth from harm and decay. This initiative was led by a multi-disciplinary team of researchers from the University of Washington in Seattle.

“This is a critical first step to our long-term goal to develop stem cell-based treatments to repair damaged teeth and regenerate those that are lost,” said Hai Zhang, professor of restorative dentistry at the UW School of Dentistry and one of the co authors of the paper describing the research.

The findings are published today in the journal Developmental Cell. Ammar Alghadeer, a graduate student in Hannele Ruohola-Baker’s laboratory in the Department of Biochemistry at the UW School of Medicine was the lead author on the paper. The lab is affiliated with the UW Medicine Institute for Stem Cell and Regenerative Medicine.