Toggle light / dark theme

You may have heard of the fantastic-sounding “dark side of the genome.” This poorly studied fraction of DNA, known as heterochromatin, makes up around half of your genetic material, and scientists are now starting to unravel its role in your cells.

For more than 50 years, scientists have puzzled over the genetic material contained in this “dark DNA.” But there’s a growing body of evidence showing that its proper functioning is critical for maintaining cells in a healthy state. Heterochromatin contains tens of thousands of units of dangerous DNA, known as “” (or TEs). TEs remain silently “buried” in heterochromatin in normal cells—but under many pathological conditions they can “wake up” and occasionally even “jump” into our regular genetic code.

And if that change benefits a cell? How wonderful! Transposable elements have been co-opted for new purposes through evolutionary history—for instance the RAG genes in and the genes required for driving the development of the placenta and mammalian evolution have been derived from TEs.

Chewing gum releases hundreds of tiny plastic pieces straight into people’s mouths, researchers said on Tuesday, also warning of the pollution created by the rubber-based sweet.

The small study comes as researchers have increasingly been finding small shards of plastic called microplastics throughout the world, from the tops of mountains to the bottom of the ocean – and even in the air we breathe.

They have also discovered microplastics riddled throughout human bodies – including inside our lungs, blood and brains – sparking fears about the potential effect this could be having on health.

Natural biological tissues, like human skin, possess a unique combination of properties that synthetic materials struggle to replicate. Skin is strong yet flexible and, most impressively, capable of self-repair. Until now, scientists have only been able to replicate either the stiffness of biological tissues or their self-healing ability—but never both at once.

Hydrogels have many advantages, such as biocompatibility, nutrient transport, and ionic conductivity. These features make them promising materials for biomedical applications, but their mechanical limitations have kept them from reaching their full potential.

Most self-healing hydrogels are too soft, with a Young’s modulus below 100 kilopascals (kPa). Others that achieve stiffness above 100 megapascals (MPa) typically lose their ability to heal.

Mature or nearly mature fruits of Piper longum are used as a spice, valued for their commercial and industrial applications, as well as in traditional Chinese medicine for their multiple effects, such as dispelling cold and relieving pain.

Given their long history of medicinal use, the fruits of P. longum present an opportunity to explore their therapeutic constituents. However, the chemical components of traditional Chinese medicines are often complex, making the efficient discovery of novel active compounds a challenging task in natural product research.

To address this challenge, a research team led by Prof. Haji Akber Aisa from the Xinjiang Technical Institute of Physics & Chemistry of the Chinese Academy of Sciences isolated 12 dimeric amide alkaloid enantiomers with anti-inflammatory and antidiabetic effects from P. longum fruits using a molecular network-based dereplication strategy. This study was published in the Journal of Agricultural and Food Chemistry.

Researchers have developed a tiny magnetic robot that can take 3D scans from deep within the body and could revolutionise early cancer detection.

The team, led by engineers from the University of Leeds, says this is the first time high-resolution three-dimensional ultrasound images taken from a probe deep inside the gastrointestinal tract, or gut, have been generated.

It paves the way to transforming the diagnosis and treatment of several forms of cancer by enabling ‘virtual biopsies’ – noninvasive scans that provide immediate diagnostic data. These scans allow doctors to detect, stage, and potentially treat lesions in a single procedure, eliminating the need for physical biopsies.

Wenzhou Medical University and collaborating institutions have identified a population of human neural retinal stem-like cells able to regenerate retinal tissue and support visual recovery.

Vision loss caused by affects millions worldwide. Conditions such as and age-related macular degeneration involve the irreversible loss of light-sensitive neural cells in the retina. While current treatments may slow progression, they do not replace damaged tissue.

For decades, scientists have explored whether stem cells could be used to regenerate the retina, but the existence of true retinal stem cells in humans has remained uncertain. In fish and amphibians, the outer edge of the retina houses stem cells that regenerate tissue continuously. Whether a comparable system exists in the human eye has been debated for more than two decades.

A team of MIT researchers recently created the first synthetic muscle actuator that can flex in multiple directions. This study opens the door for more capable soft robots and other advanced medical breakthroughs. Here’s how the team utilized a new 3D printing method, alongside specially made stamps, to grow synthetic muscles in the lab that can replicate the real thing.

Understanding Muscle Architecture and Movement

To understand why you can’t just make a motor that does what a muscle does, you first need to look at how your body operates. When you move your hand, there is a lot more going on than just your muscles pulling in a single direction. Many multidirectional skeletal muscle fibers form intricate patterns and are mounted at angles to produce the exact motions of the human body.

Mitochondria play a crucial role in maintaining energy balance and cellular health. Recent studies have shown that chronic stress in neuronal mitochondria can have far-reaching effects, not only damaging the neurons themselves but also influencing other tissues and systemic metabolic functions.

A new study led by Dr. Tian Ye’s research team at the Institute of Genetics and Developmental Biology of the Chinese Academy of Sciences (CAS) reveals that chronic mitochondrial stress in neurons promotes serotonin release via TMBIM-2-dependent calcium (Ca²⁺) oscillations, which in turn activates the mitochondrial unfolded protein response (UPRmt) in the intestine. The findings are published in the Journal of Cell Biology.

The researchers found that TMBIM-2 works in coordination with the plasma membrane calcium pump MCA-3 (a PMCA homolog) to regulate synaptic Ca²⁺ balance, sustaining persistent calcium signaling oscillations at neuronal synaptic sites.