Toggle light / dark theme

Polyphosphoesters, molecules containing phosphorus as the central element, are easily traceable without the need for contrast agents, thanks to developments by researchers from the University of Twente (UT). Normally, these molecules display a similar molecular composition to our DNA, leading to considerable “noise” in the image.

The UT researchers provided a solution and developed unique polymers that are traceable with magnetic resonance imaging (MRI). Dr. Olga Koshkina, Project Leader in the Sustainable Polymer Chemistry Group, published this new concept of traceable polymers in Communications Chemistry.

The researchers adjusted the properties of polyphosphoesters (special polymers with a molecular structure inspired by DNA and RNA). As a result, the polymers acquired a different “MRI color,” making them more distinguishable from the natural background. Additionally, they exhibit other physical MRI characteristics suitable for imaging.

Let’s take a leap into the future, shall we? In 2,123, envision a world where technology is seamlessly integrated into every aspect of our lives. Flying cars might not be the norm, but sustainable modes of transportation dominate the scene, with eco-friendly solutions at the forefront. Advanced medical breakthroughs have extended human life expectancy, and perhaps we’ve even cracked the code on combating climate change. Social structures may have evolved, embracing inclusivity and diversity. It’s a realm where innovation and a collective global effort have paved the way for a balanced and interconnected planet. 🌐🚀🔮

Credit:
IKAROS: Andrzej Mirecki, CC BY-SA 3.0 https://creativecommons.org/licenses/by-sa/3.0/, https://commons.wikimedia.org/wiki/File: IKAROS_solar_sail.jpg.
Press Conference: ESO, CC BY 4.0 https://creativecommons.org/licenses/by/4.0/, https://commons.wikimedia.org/wiki/File: Press_Conference_at_ESO_HQ2.tif.

Animation is created by Bright Side.

Music from TheSoul Sound: https://thesoul-sound.com/

Join us on Patreon! https://www.patreon.com/MichaelLustgartenPhD

Discount Links:
Oral Microbiome: https://www.bristlehealth.com/?ref=michaellustgarten.
Enter Code: ConquerAging.

Epigenetic, Telomere Testing: https://trudiagnostic.com/?irclickid=U-s3Ii2r7xyIU-LSYLyQdQ6…M0&irgwc=1
Use Code: CONQUERAGING

NAD+ Quantification: https://www.jinfiniti.com/product/intracellular-nad-test/

https://www.hdiac.org/podcast/neuroweapons-part-2/

The second installment of this two-part podcast continues the conversation with Dr. Giordano on the implications of weaponizing brain science. In an article he wrote for HDIAC in 2016 titled ‘Battlescape Brain’, Dr. Giordano hinted at the possibility of a neuroweapons arms race that could follow from international surveillance. Dr. Giordano provides an updated look at these concerns in the context of today’s environment. He concludes by describing ethical frameworks that could regulate future policies for biotechnology as the world moves forward in this dynamic area.

Watch regular HDIAC webinars and video podcasts by subscribing:

Become a member of the Homeland Defense and Security Information Analysis Center: https://www.hdiac.org/register/

The capacity to regulate the biodistribution of therapeutics is a highly desired feature that can limit the side effects of many drugs. In a new study in Scientific Reports, Noah Joseph, and a team of biotechnology and nanoscience scientists in Israel, describe a nanoscale agent developed from a coupled polymer-DNA origami hybrid capable of exhibiting stability in serum and slow diffusion through tissues.

By coupling to fragments of polyethylene glycol through polyamine , the team noted marked stability of the agents in vivo, where more than 90% of the constituents maintained structural integrity for five days after subcutaneous injection.

The findings highlight the polymer-DNA hybrid nanostructures as viable pharmacological agents that can enter mainstream technologies, including their use as monoclonal antibodies for drug activity.

Buckle up, because we’re entering the era of thinking machines that make humans look like chattering chimps! But don’t worry about polishing your resume to impress our future robot overlords just yet. The experts are wildly divided on when superintelligent AI will actually arrive. It’s like we’re staring at an AI time machine without knowing if it will teleport us to 2 years from now or 2 decades into the future!

In one corner, we have Mustafa Suleyman from Inflection AI. He says take a chill pill, we’ve got at least 10–20 more years before the AI apocalypse. But hang on…his company just whipped up the world’s 2nd biggest AI supercomputer! It’s cruising with 3X the horsepower of GPT-4, the chatbot with reading skills rivaling a university professor. So something tells me Suleyman’s timeline is slower than your grandma driving without her glasses.

Meanwhile, OpenAI is broadcasting a very different arrival time. They believe superintelligence could show up within just 4 years! To get ready, they’ve launched an AI safety SWAT team, led by brainiacs like Ilya Sutskever. They’re funneling millions into this initiative with a strict 2027 deadline. Why so urgent? Well, they say superintelligence could either catapult humanity into a sci-fi future utopia, or permanently reduce us to drooling toddlers. Not great options there.

Please join my mailing list here 👉 https://briankeating.com/list to win a meteorite 💥

Is the Matrix really real? And if so, which pill would David Chalmers take?

Join us for a mind-bending journey through virtual worlds, human consciousness, technology, philosophy, and religion, and find out!

David Chalmers is an Australian philosopher and cognitive scientist specializing in the areas of philosophy of mind and philosophy of language. He is a Professor of Philosophy and Neural Science at New York University and co-director of NYU’s Center for Mind, Brain, and Consciousness (along with Ned Block).

One of ray kurzweils wonder machines are already here self assembled nanobots called foglet machines. This could allow for future avatars that people could pilot for daily life.


Colloidal magnetic nanoparticles are candidates for application in biology, medicine and nanomanufac-turing. Understanding how these particles interact collectively in fluids, especially how they assemble and aggregate under external magnetic fields, is critical for high quality, safe, and reliable deployment of these particles. Here, by applying magnetic forces that vary strongly over the same length scale as the colloidal stabilizing force and then varying this colloidal repulsion, we can trigger self-assembly of these nanoparticles into parallel line patterns on the surface of a disk drive medium. Localized within nanometers of the medium surface, this effect is strongly dependent on the ionic properties of the colloidal fluid but at a level too small to cause bulk colloidal aggregation.

5th BigBrain Workshop 2021
22 September 2021 — Applications.
Chair: Kathleen Rockland.

The Unique Cytoarchitecture and Wiring of The Default Mode Network.
Casey Paquola.

Background. Complex behaviours benefit from parallel distributed processing in multiple brain networks. The roles of certain networks are well-defined, while others remain elusive. Arguably, none are so elusive as the default mode network (DMN); a distributed set of brain regions that decrease in activity during many externally oriented tasks. Revealing the cytoarchitectural composition and connectional layout of the DMN is crucial to defining its role in complex behaviours.

Method. We examined the cytoarchitectural composition of the DMN using an established cortical type atlas (García-Cabezas et al., 2020; Von Economo and Koskinas, 1925) and by applying non-linear dimensionality reduction to BigBrain-derived staining intensity profiles (Paquola et al., 2019). Next, we used magnetic resonance imaging (MRI) to explicate structural wiring and effective connectivity of the whole brain. In both modalities, we examined the influence of cytoarchitecture on extrinsic connectivity of the DMN. Finally, we evaluated the uniqueness of the DMN relative to other large-scale functional brain networks.