Toggle light / dark theme

Nanoclusters (NCs) are crystalline materials that typically exist on the nanometer scale. They are composed of atoms or molecules in combination with metals like cobalt, nickel, iron, and platinum, and have found several interesting applications across diverse fields, including drug delivery, catalysis, and water purification.

A reduction in the size of NCs can unlock additional potential, allowing for processes such as single-atom catalysis. In this context, the coordination of organic molecules with individual transition-metal atoms shows promise for further advancement in this field.

An innovative approach to further reduce the size of NCs involves introducing metal atoms into self-assembled monolayer films on flat surfaces. However, it is crucial to exercise caution in ensuring that the arrangement of metal atoms on these surfaces does not disrupt the ordered nature of these monolayer films.

A large number of applications in the chemical industry rely on the molecules NADH or NADPH as fuel. A team led by Professor Dirk Tischler, head of the Microbial Biotechnology working group at Ruhr University Bochum, used a biocatalyst to study their production in detail.

The researchers proved that, in addition to formate, the biocatalyst formate dehydrogenase can also convert formamides. This means, for one thing, that the enzyme can also cleave the difficult-to-break C–N bond. For another, formamides are a common solvent.

“This opens up completely new possibilities for poorly soluble NADH reactions as well as NADPH-dependent reactions,” says Tischler.

Acoustic tweezers can control target movement through the interaction of momentum between an acoustic wave and an object. Due to their high tissue penetrability and strong acoustic radiation force, such tweezers overcome the limitations of optical and magnetic tweezers, thus making them suitable for in vivo cell manipulation.

A research team led by Prof. Zheng Hairong from the Shenzhen Institute of Advanced Technology (SIAT) of the Chinese Academy of Sciences (CAS) has recently developed a new type of acoustic —the phased-array holographic (PAHAT) system—which is based on a high-density planar array transducer capable of generating tunable three-dimensional bulk acoustic waves. The researchers hope this system can realize a pharmacological version of “telekinesis.” The study was published in Nature Communications on June 6.

The in vivo environment is extremely complex, due to the different characteristics of various tissues, organs, bones, blood vessels, and blood flow. Such a complex environment creates a huge challenge: How can acoustic methods be used to “trap” bacteria so they can produce therapeutic effects on tumors?

The latest in the intersection of large language models and life science: virus sequences, virus proteins, and their function.

Large language models improve annotation of prokaryotic viral proteins.


Ocean viral proteome annotations are expanded by a machine learning approach that is not reliant on sequence homology and can annotate sequences not homologous to those seen in training.

After COVID vaccination, it usually takes weeks for our bodies to develop protective antibody responses. Imagine, however, a vaccine that speeds up the production of antibodies against SARS-CoV-2, the virus that spreads COVID-19.

A research team led by Rong Hai, an associate professor of microbiology and plant pathology at the University of California, Riverside, has developed such a vaccine by using preexisting immunity to a separate virus (the influenza virus) to help kickstart the process of making antibodies against SARS-CoV-2.

“Any delay in the immune response to SARS-CoV-2 means there is some time when people are left poorly protected against the virus,” Hai said. “Our vaccine is designed to get people those protective antibody responses faster, so they are not vulnerable to the coronavirus. This is better protection for everyone. It could be especially valuable for people who still lack immunity to SARS-CoV-2, such as children.”

Engineers at MIT, Penn State University, and Carnegie Mellon University have devised a way to manipulate cells in three dimensions using sound waves. These “acoustic tweezers” could make possible 3D printing of cell structures for tissue engineering and other applications, the researchers say.

Designing tissue implants that can be used to treat human disease requires precisely recreating the natural tissue architecture, but so far it has proven difficult to develop a single method that can achieve that while keeping cells viable and functional.

“The results presented in this paper provide a unique pathway to manipulate biological cells accurately and in three dimensions, without the need for any invasive contact, tagging, or biochemical labeling,” says Subra Suresh, president of Carnegie Mellon and former dean of engineering at MIT. “This approach could lead to new possibilities for research and applications in such areas as regenerative medicine, neuroscience, tissue engineering, biomanufacturing, and cancer metastasis.”

Jan 29 (Reuters) — The first human patient has received an implant from brain-chip startup Neuralink on Sunday and is recovering well, the company’s billionaire founder Elon Musk said.

“Initial results show promising neuron spike detection,” Musk said in a post on the social media platform X on Monday.

Spikes are activity by neurons, which the National Institute of Health describes as cells that use electrical and chemical signals to send information around the brain and to the body.

Year 2017 face_with_colon_three


Tissue Nanotransfection (TNT), that can generate any cell type of interest for treatment within the patient’s own body. This technology may be used to repair injured tissue or restore function of aging tissue, including organs, blood vessels and nerve cells.

“By using our novel nanochip technology, injured or compromised organs can be replaced. We have shown that skin is a fertile land where we can grow the elements of any organ that is declining,” said Dr. Chandan Sen, director of Ohio State’s Center for Regenerative Medicine & Cell Based Therapies, who co-led the study with L. James Lee, professor of chemical and biomolecular engineering with Ohio State’s College of Engineering in collaboration with Ohio State’s Nanoscale Science and Engineering Center.

Researchers studied mice and pigs in these experiments. In the study, researchers were able to reprogram skin cells to become vascular cells in badly injured legs that lacked blood flow. Within one week, active blood vessels appeared in the injured leg, and by the second week, the leg was saved. In lab tests, this technology was also shown to reprogram skin cells in the live body into nerve cells that were injected into brain-injured mice to help them recover from stroke.

If you read and believe headlines, it seems scientists are very close to being able to merge human brains with AI. In mid-December 2023, a Nature Electronics article triggered a flurry of excitement about progress on that transhuman front:

“‘Biocomputer’ combines lab-grown brain tissue with electronic hardware”

“A system that integrates brain cells into a hybrid machine can recognize voices”