Toggle light / dark theme

The uptake of artificial intelligence (AI), computer vision and machine learning has been high in some industries, such as retail (see AiFi and Standard AI) and automotive (see Waymo and Tesla), but we’re now starting to see it break into some of the most critical aspects of society.

The recent accelerations in healthcare are perhaps the best example of this. Over 90% of hospitals and healthcare systems now have an AI or automation strategy in place, up from 53% in 2019, and “the global market for surgical robotics and computer-assisted surgery is anticipated to grow from $6.1 billion in 2020 to $11.6 billion by 2025.”

AI is starting to become more than just a buzzword. At this very moment, we’re starting to see AI-enhanced advanced tooling augment human capabilities and reshape how surgical procedures are planned, executed and managed. With aging populations, rising costs, lack of medical staff and backlogs worse than ever (almost 8 million people in the U.K.), the demand for AI-driven efficiency and surgery precision is escalating like never before.

DNA, or deoxyribonucleic acid, is the molecular system responsible for carrying genetic information in living organisms, utilizing its two helical strands to transcribe and amplify this information. Scientists are highly interested in developing artificial molecular systems that can match or even exceed the functionality of DNA. Double-helical foldamers represent one such promising molecular system.

Helical foldamers are a class of artificial molecules that fold into well-defined helical structures like helices found in proteins and nucleic acids. They have garnered considerable attention as stimuli-responsive switchable molecules, tuneable chiral materials, and cooperative supramolecular systems due to their chiral and conformational switching properties.

Double-helical foldamers exhibit not only even stronger chiral properties but also unique properties, such as the transcription of chiral information from one chiral strand to another without chiral properties, enabling potential applications in higher-order structural control related to replication, like nucleic acids. However, the artificial control of the chiral switching properties of such artificial molecules remains challenging due to the difficulty in balancing the dynamic properties required for switching and stability. Although various helical molecules have been developed in the past, reversal of twist direction in double-helix molecules and supramolecules has rarely been reported.

“These results confirm that computerized tongue analysis is a secure, efficient, user-friendly and affordable method for disease screening that backs up modern methods with a centuries-old practice,”


This technology could be aah-mazing!

Researchers in Iraq and Australia say they have developed a computer algorithm that can analyze the color of a person’s tongue to detect their medical condition in real time — with 98% accuracy.

“Typically, people with diabetes have a yellow tongue; cancer patients a purple tongue with a thick greasy coating; and acute stroke patients present with an unusually shaped red tongue,” explained senior study author Ali Al-Naji, who teaches at Middle Technical University in Baghdad and the University of South Australia.

A new publication has discovered ways to reduce the toxicity of graphene oxide (GO), an ultra-thin sheet of nanomaterial derived from graphite, laying the groundwork to use it as a drug delivery system.

Professor Khuloud Al-Jamal, who led the study, said: “Researchers have been incredibly excited in the potential medical applications of graphene since experiments into the nanomaterial were recognised with the Nobel Prize in Physics in 2010. However, concerns around toxicity have remained a consistent obstacle.”

Graphene oxide (GO) is an ultra-thin sheet derived from graphite. It is similar to pencil lead but includes attached oxygen atoms, making it compatible with water. Its unique physical and chemical properties mean it has a high capacity for carrying antibiotics and anticancer drugs, among others, as well as targeting specific cells, making it a potentially effective drug delivery system.