Toggle light / dark theme

Mikey Siegel, with a background in robotics from the MIT Media Lab, shares insights from his decade-long exploration into technology’s role in human well-being and consciousness. He discusses the profound potential of Artificial General Intelligence (AGI) shaped with compassionate and wise values. Siegel emphasizes the importance of the human developmental process in creating benevolent AI and the integration of contemplative practices in tech development. He envisions a future where AGI supports human development globally with love and care, akin to a parent nurturing a child, ultimately fostering a connected and compassionate society.

00:00 Introduction to Mikey Siegel and His Work.
01:09 The Profound Impact of AGI on Humanity.
02:42 The Role of AI in Shaping Reality.
04:06 The Vision of a Compassionate Super Intelligence.
07:26 Creating AI from a Culture of Compassion.
07:51 Integrating Human Development in AI Creation.
09:28 Ownership and Developmental Stages of AI
12:13 Demystifying the Mystical Through Science.
14:53 Preparing for the Future of AI

SingularityNET was founded by Dr. Ben Goertzel with the mission of creating a decentralized, democratic, inclusive, and beneficial Artificial General Intelligence (AGI). An AGI is not dependent on any central entity, is open to anyone, and is not restricted to the narrow goals of a single corporation or even a single country.

The SingularityNET team includes seasoned engineers, scientists, researchers, entrepreneurs, and marketers. Our core platform and AI teams are further complemented by specialized teams devoted to application areas such as finance, robotics, biomedical AI, media, arts, and entertainment.

Website: https://singularitynet.io.
X: https://twitter.com/SingularityNET
Instagram: / singularitynet.io.
Discord: / discord.
Forum: https://community.singularitynet.io.
Telegram: https://t.me/singularitynet.
WhatsApp: https://whatsapp.com/channel/0029VaM8
Warpcast: https://warpcast.com/singularitynet.
Mindplex Social: https://social.mindplex.ai/@Singulari
Github: https://github.com/singnet.
Linkedin: / singularitynet.

To be able to make full use of these modeling systems, researchers have developed a growing toolkit of genetic modification techniques. These techniques can be applied to mature brain organoids or to the preceding embryoid bodies (EBs) and founding cells. This review will describe techniques used for transient and stable genetic modification of brain organoids and discuss their current use and respective advantages and disadvantages. Transient approaches include adeno-associated virus (AAV) and electroporation-based techniques, whereas stable genetic modification approaches make use of lentivirus (including viral stamping), transposon and CRISPR/Cas9 systems. Finally, an outlook as to likely future developments and applications regarding genetic modifications of brain organoids will be presented.

The development of brain organoids (Kadoshima et al., 2013; Lancaster et al., 2013) has opened up new ways to study brain development and evolution as well as neurodevelopmental disorders. Brain organoids are multicellular 3D structures that mimic certain aspects of the cytoarchitecture and cell-type composition of certain brain regions over a particular developmental time window (Heide et al., 2018). These structures are generated by differentiation of induced pluripotent stem cells (iPSCs) or embryonic stem cells (ESCs) into embryoid bodies followed by, or combined, with neural induction (Kadoshima et al., 2013; Lancaster et al., 2013). In principle, two different classes of brain organoid protocols can be distinguished, namely: (i) the self-patterning protocols which produce whole-brain organoids; and (ii) the pre-patterning protocols which produce brain region-specific organoids (Heide et al., 2018).

The world’s first brain prosthesis has passed the first stages of live testing.

The microchip, designed to model a part of the brain called the hippocampus, has been used successfully to replace a neural circuit in slices of rat brain tissue kept alive in a dish. The prosthesis will soon be ready for testing in animals.

The device could ultimately be used to replace damaged brain tissue which may have been destroyed in an accident, during a stroke, or by neurodegenerative conditions such as Alzheimer’s disease. It is the first attempt to replace central brain regions dealing with cognitive functions such as learning or speech.

A molecular biology research team at the University of Miami Miller School of Medicine has become the first to map out how mitochondrial messenger RNA folds in human cells.

The research advances knowledge about the expression of genes in the mitochondria and paves the way for identification of therapeutic targets for mitochondrial neurodegenerative diseases.

“Dysfunctional mitochondria can cause devastating diseases, frequently with childhood-onset, known as mitochondrial encephalomyopathies. Despite advances in identifying genes responsible for these disorders, their pathophysiological mechanisms have been poorly understood,” said Antoni Barrientos, Ph.D., professor of neurology and biochemistry and molecular biology at the Miller School. “This was partly due to a lack of a full understanding of mitochondrial gene expression. Specifically, nothing was known about how mitochondrial messenger RNA folds and how that could influence its stability and translation in health and disease.”

Using #CellDIVE multiplexed imaging and antibodies from Cell Signaling Technology to uncover cell identity and brain structure in Alzheimer’s disease, demonstrating how spatial biology can lead to advances in therapy development for neuro degeneration.

🖼️: Adult Human Alzheimer’s brain demonstrating a panel of 15 markers.


Uncover cell identity and brain structure in Alzheimer’s disease with Cell DIVE multiplexed imaging, demonstrating how spatial biology can lead to advances in therapy development for neurodegeneration.

Proposed lunar biorepository could store genetic samples without electricity or liquid nitrogen. New research led by scientists at the Smithsonian proposes a plan to safeguard Earth’s imperiled biodiversity by cryogenically preserving biological material on the moon. The moon’s permanently shadowed craters are cold enough for cryogenic preservation without the need for electricity or liquid nitrogen, according to the researchers.

The paper, published today in BioScience and written in collaboration with researchers from the Smithsonian’s National Zoo and Conservation Biology Institute (NZCBI), Smithsonian’s National Museum of Natural History, Smithsonian’s National Air and Space Museum and others, outlines a roadmap to create a lunar biorepository, including ideas for governance, the types of biological material to be stored and a plan for experiments to understand and address challenges such as radiation and microgravity. The study also demonstrates the successful cryopreservation of skin samples from a fish, which are now stored at the National Museum of Natural History.

“Initially, a lunar biorepository would target the most at-risk species on Earth today, but our ultimate goal would be to cryopreserve most species on Earth,” said Mary Hagedorn, a research cryobiologist at NZCBI and lead author of the paper. “We hope that by sharing our vision, our group can find additional partners to expand the conversation, discuss threats and opportunities and conduct the necessary research and testing to make this biorepository a reality.”

Neuroscientists at Stanford have linked Alzheimer’s disease to the disruption of brain metabolism via the kynurenine pathway, which is affected by amyloid plaque and tau proteins.

Their research has demonstrated that drugs blocking this pathway can restore cognitive function in Alzheimer’s mice by improving brain metabolism. This discovery not only bridges the gap between neuroscience and oncology but also provides a fast track to repurposing existing drugs for Alzheimer’s treatment.

Alzheimer’s disease and brain energy metabolism.