Toggle light / dark theme

The Brilliantly Insane Plan to Reconstruct Leonardo da Vinci’s Genome

The more da Vinci’s the better, if you ask me!


An international team of scholars has just unveiled plans to science the shit out of Leonardo da Vinci, the man who gave us the Mona Lisa and envisioned futuristic technologies like helicopters and tanks 500 years ago. Goals of the fledgling “Leonardo Project” include recovering the famous Renaissance figure’s remains and reconstructing his genetic code.

The Leonardo Project brings together geneticists, genealogists, archaeologists, and art historians from Italy, Spain, France, the United States and elsewhere. “This is a fabulous, interdisciplinary project,” said Rhonda Roby, a geneticist at the Craig Venter Institute in California, who will be contributing its expertise in genomic reconstruction to the effort.

By examining everything from paintings and notebooks to the DNA of living relatives, the team hopes to glean new insights into Leonardo’s life, diet, physical appearance, and genetic predispositions. If they’re very lucky, the researchers may be able to reconstruct most or all of Leonardo’s genome.

Unmanned robot surgery works in pig trial

Here is the real challenge to ask the average parent or grandparent on the street: are you willing to allow your 5 year old child or grandchild to have a brain tumor removed by an autonomous robot without any trained & experienced surgeon or nurse supervision?


An unmanned robot has been used to stitch together a pig’s bowel, moving science a step closer to automated surgery, say experts.

Unlike existing machines, the Star robot is self-controlled — it doesn’t need to be guided by a surgeon’s hands.

In tests on pigs, it at least matched trained doctors at mending cut bowel, Science Translational Medicine reports.

“Liberation technologies” and the ones who will gain

How could global economic inequality survive the onslaught of synthetic organisms, micromanufacturing devices, additive manufacturing machines, nano-factories?
(http://www.beliefnet.com/columnists/lordre/2016/04/obsessed-…L36KMDo.99)

Narrated by Harry J. Bentham, author of Catalyst: A Techno-Liberation Thesis (2013), using the introduction from that book as a taster of the audio version of the book in production. (http://www.clubof.info/2016/04/liberation-technologies-to-come.html)

Paperback: http://www.amazon.com/Catalyst-Techno-Liberation-Harry-J-Ben…atfound-20

Kindle: http://www.amazon.com/Catalyst-Techno-Liberation-Harry-J-Ben…atfound-20

Audio: coming soon!

Laser Brain Cancer Treatment May Offer Extra Advantage

Neurosurgeons using lasers to treat brain cancer have discovered that the technique breaks down the blood-brain barrier, a finding that could lead to new treatment options for patients with the deadly disease.

The blood-brain barrier is sort of a natural “security system” that shields the brain from toxins in the blood but also blocks potentially helpful drugs such as those used in chemotherapy.

“We were able to show that this blood-brain barrier is broken down for about four weeks after you do this laser therapy,” said Dr. Eric Leuthardt, a professor of neurosurgery at Washington University in St. Louis. “So not only are you killing the tumor, you are actually opening up a window of opportunity to deliver various drugs and chemicals and therapies that could otherwise not get there.”

Preparing for the Future of Artificial Intelligence

Today, we’re announcing a new series of workshops and an interagency working group to learn more about the benefits and risks of artificial intelligence.

There is a lot of excitement about artificial intelligence (AI) and how to create computers capable of intelligent behavior. After years of steady but slow progress on making computers “smarter” at everyday tasks, a series of breakthroughs in the research community and industry have recently spurred momentum and investment in the development of this field.

Today’s AI is confined to narrow, specific tasks, and isn’t anything like the general, adaptable intelligence that humans exhibit. Despite this, AI’s influence on the world is growing. The rate of progress we have seen will have broad implications for fields ranging from healthcare to image- and voice-recognition. In healthcare, the President’s Precision Medicine Initiative and the Cancer Moonshot will rely on AI to find patterns in medical data and, ultimately, to help doctors diagnose diseases and suggest treatments to improve patient care and health outcomes.

Faster, cheaper way to produce new antibiotics

Nice


A novel way of synthesising a promising new antibiotic has been identified by scientists at the University of Bristol. By expressing the genes involved in the production of pleuromutilin in a different type of fungus, the researchers were able to increase production by more than 2,000 per cent.

With resistance growing to existing antibiotics, there is a vital and urgent need for the discovery and development of new antibiotics that are cost effective. Promising developments are derivatives of the antibiotic pleuromutilin, which are isolated from the mushroom Clitopilus passeckerianus.

These new compounds are some of the only new class of antibiotics to join the market recently as human therapeutics. Furthermore, with their novel mode of action and lack of cross-resistance, pleuromutilins and their derivatives represent a class with further great potential, particularly for treating resistant strains such as methicillin-resistant Staphylococcus aureus (MRSA) and extensively drug resistant tuberculosis (XTB).

Endometrial Cancer Genetic Risk Factors Double

The strength of genome-wide association studies (GWAS) lies in their ability to identify new disease biomarkers through large-scale genomic comparisons of afflicted individuals and unaffected controls. Now, using this powerful technique, an international collaboration of researchers has identified five new gene regions that increase a woman’s risk of developing endometrial cancer—one of the most common cancers to affect women—taking the number of known gene regions associated with the disease to nine.

Endometrial cancer affects the lining of the uterus, typically presenting as an adenocarcinoma. Endometrial cancer is the sixth most common cancer in women worldwide and is the most common cancer of the female reproductive tract in developed countries, with over 320,000 new cases diagnosed in 2012.

Investigators at the University of Cambridge, Oxford University, and QIMR Berghofer Medical Research Institute in Brisbane studied the DNA of over 7000 women with endometrial cancer and 37,000 women without cancer to identify genetic variants that affected a woman’s risk of developing the disease.

/* */