Toggle light / dark theme

Exercise training increases size of hippocampus and improves memory

Deterioration of the hippocampus precedes and leads to memory impairment in late adulthood (1, 2). Strategies to fight hippocampal loss and protect against the development of memory impairment has become an important topic in recent years from both scientific and public health perspectives. Physical activity, such as aerobic exercise, has emerged as a promising low-cost treatment to improve neurocognitive function that is accessible to most adults and is not plagued by intolerable side effects often found with pharmaceutical treatments (3). Exercise enhances learning and improves retention, which is accompanied by increased cell proliferation and survival in the hippocampus of rodents (46); effects that are mediated, in part, by increased production and secretion of BDNF and its receptor tyrosine kinase trkB (7, 8).

Aerobic exercise training increases gray and white matter volume in the prefrontal cortex (9) of older adults and increases the functioning of key nodes in the executive control network (10, 11). Greater amounts of physical activity are associated with sparing of prefrontal and temporal brain regions over a 9-y period, which reduces the risk for cognitive impairment (12). Further, hippocampal and medial temporal lobe volumes are larger in higher-fit older adults (13, 14), and larger hippocampal volumes mediate improvements in spatial memory (13). Exercise training increases cerebral blood volume (15) and perfusion of the hippocampus (16), but the extent to which exercise can modify the size of the hippocampus in late adulthood remains unknown.

To evaluate whether exercise training increases the size of the hippocampus and improves spatial memory, we designed a single-blind, randomized controlled trial in which adults were randomly assigned to receive either moderate-intensity aerobic exercise 3D/wk or stretching and toning exercises that served as a control. We predicted that 1 y of moderate-intensity exercise would increase the size of the hippocampus and that change in hippocampal volume would be associated with increased serum BDNF and improved memory function.

Long-Term NSAID Use Linked to Lower Dementia Risk

Summary: A new study finds that long-term use of non-steroidal anti-inflammatory drugs (NSAIDs) is associated with a lower risk of developing dementia. Researchers followed 11,745 adults over 14.5 years and found that those who used NSAIDs long-term had a 12% reduced dementia risk.

However, short-and intermediate-term NSAID use did not provide the same benefit, nor was the total cumulative dose linked to risk reduction. These findings suggest that sustained anti-inflammatory effects may play a role in protecting against dementia.

Two AIs Discuss: Transcendence in the Age of AI! Is it Prophetic?!

The hosts discuss the 2014 film Transcendence by Wally Pfister and Jack Paglen. It depicts a world grappling with the implications of advanced artificial intelligence. The narrative follows a brilliant scientist whose consciousness is uploaded into a powerful computer system, leading to rapid technological advancements and sparking both hope and fear in humanity. As this AI evolves, questions arise about its intentions, its impact on society, and the very definition of life and consciousness, creating escalating conflict and raising profound ethical dilemmas. The screenplay excerpts depict a world grappling with the implications of advanced Artificial Intelligence (AI) and nanotechnology, touching upon several ethical topics. Dr. Max Waters, an AI researcher, is central to the narrative. There’s evidence of mind uploading or the transfer of consciousness to machines, particularly concerning a character named Will (Johnny Depp). This raises fundamental ethical questions about the nature of consciousness, the definition of life, and the potential for a digital consciousness.

The development of a powerful AI and the proliferation of nanotechnology appear to lead to a technological singularity, a point where technological growth becomes uncontrollable and irreversible, raising fears of a dystopian future and tech gone wrong. An organization called the RIFT opposes this technological advancement, highlighting the ethical concerns surrounding uncontrolled technological progress.

The screenplay also features conflict and threats, suggesting the potential for misuse of advanced technology and raising questions about its impact on humanity. The involvement of the FBI indicates that this technology poses a significant threat to societal order. Furthermore, the presence of a computer virus as a plot device suggests the vulnerabilities and risks associated with highly interconnected technological systems. The narrative explores the complex ethical dilemmas arising from the creation of highly intelligent machines and the transformative power of nanotechnology, including the potential loss of human autonomy and the unpredictable consequences of the AISingularity. #artificialintelligence #Transcendence #SciFiThriller #AISingularity #Nanotechnology #MindUploading #FutureTech #DystopianFuture #TechGoneWrong #Consciousness #MovieScreenplay #ScienceFiction #TechnologicalSingularity #AI

#Robotics #scifi #Technology #Innovation #Automation #Society #Economics #Work #Future #Dystopia #Utopia #ScienceFiction #Satire #SocialCommentary #skeptic #podcast #synopsis #books #bookreview #ai #artificialintelligence #booktube #aigenerated #documentary #alternativeviews #aideepdive #science #hiddenhistory #futurism #videoessay #ethics

Study shows that dendritic plasticity contributes to the integration of memories

Past neuroscience studies suggest that memories of events that occurred at short time intervals from one another are often connected, via a process referred to as memory linking. While memory linking is now a well-documented phenomenon, its neural underpinnings have not been fully elucidated.

Researchers at the University of California Los Angeles (UCLA) recently carried out a study aimed at better understanding the neural processes that contribute to memory linking in the . Their findings, published in Nature Neuroscience, suggest that dendritic plasticity, the adaptation of dendrites (i.e., branch-like extensions of neurons) over time, plays a key role in the linking of memories.

“A few years back, in a landmark study published in Nature in 2016, we demonstrated that memories formed a few hours apart are linked because they are stored in a common set of neurons in the hippocampus,” Alcino Silva, senior author of the paper, told Medical Xpress. “We wanted to know: Where within these neurons are these memories stored and linked? What was causing these neurons to be recruited?”

Algorithm sheds light on ‘disordered’ proteins once considered too difficult to study

Intrinsically disordered proteins (IDPs) do not attain a stable secondary or tertiary structure and rapidly change their conformation, making structure prediction particularly challenging. Although these proteins exhibit chaotic and “disordered” structures, they still perform essential functions.

IDPs comprise approximately 30% of the and play important functional roles in transcription, translation, and signaling. Many mutations linked to , including (ALS), are located in intrinsically disordered protein regions (IDRs).

Powerful machine-learning algorithms, including AlphaFold and RoseTTAFold, cannot provide realistic representations of these ‘disordered’ and ‘chaotic’ protein regions as a whole. This is because they have not been trained on such data and because these proteins exhibit inherent dynamic behavior, adopting a range of conformations rather than a single stable one.

Heat-activated receptor could unlock new pain therapies

Touch a hot plate and your hand flies back. While the response is almost instant, researchers are still working to better understand the molecular mechanisms behind these sensations of heat and pain.

Now, investigators at the Jacobs School of Medicine and Biomedical Sciences at the University at Buffalo have uncovered how heat causes a critical receptor protein within cells to unfold and relay pain. This newfound activation mechanism could open up new therapeutic targets for treating pain and contribute to the development of needed alternatives to opioids.

The study is published in Proceedings of the National Academies of Sciences.

Entangled polymers and nanosheets create skin-like, self-healing hydrogel

We all encounter gels in daily life—from the soft, sticky substances you put in your hair to the jelly-like components in various foodstuffs. While human skin shares gel-like characteristics, it has unique qualities that are very hard to replicate. It combines high stiffness with flexibility, and it has remarkable self-healing capabilities, often healing completely within 24 hours of an injury.

Until now, artificial gels have either managed to replicate this high stiffness or natural skin’s self-healing properties, but not both. Now, a team of researchers from Aalto University and the University of Bayreuth are the first to develop a hydrogel with a unique structure that overcomes earlier limitations, opening the door to applications such as , , soft robotics sensors and artificial skin.

In the study, the researchers added exceptionally large and ultra-thin specific clay nanosheets to hydrogels, which are typically soft and squishy. The result is a highly ordered structure with densely entangled polymers between nanosheets, not only improving the mechanical properties of the hydrogel but also allowing the material to self-heal.

/* */