Toggle light / dark theme

WeaRobot wants to democratize robotic exoskeletons. They want to make modular exoskeletons, so that is more affordable. The exoskeleton can boost the mobility joint by joint. Just supporting the movement of one knee or one elbow or assembling all modules for a full body exoskeleton. This is targeted at enhancing mobility and function for the growing elderly population.

WeaRobot is breaking apart robotic exoskeletons to make them more affordable and adaptable.

Robotic exoskeletons are electromechanical suits that can give paraplegic people the chance to walk again. Full body suits produce impressive results, such as teaching dormant body parts to move on their own again. But they are expensive, ranging from $40,000 to more than $100,000. Now, a Mexican robotics startup is breaking exoskeletons down into smaller pieces, with the goal of making this medical technology affordable and adaptable.

Read more

Bacteria are among the oldest life forms on Earth and exist nearly everywhere; in the soil, water, deep in the earth’s crust and in our own bodies. Actually, there are at least as many bacterial cells in the human body as human cells.

Bacteria tend to get a bad rap, but now, armed with new research on the bacterial world (or microbiome) in our bodies, we are starting to understand how important a role microorganisms play in our health (good as well as bad).

And beyond merely understanding the relationship between our bodies and the microorganisms inhabiting it, we’re on the cusp of significantly altering that relationship.

Read more

ADELPHI, Md. — A U.S. Army Research Laboratory biotechnology scientist recently published an editorial article on the future directions of synthetic biology research to meet critical Army needs in the Synthetic Biology edition of the Journal of the American Chemical Society.

In the publication, Dr. Bryn Adams, who works in ARL’s Bio-Technology Branch, highlights examples of robust, tractable bacterial species that can meet the demands of tomorrow’s state-of-the-art in synthetic biology.

“ACS Synthetic Biology is the premier synthetic biology journal in the world, with a wide readership of biologists, chemists, physicists, engineers and computer programmers,” Adams said. “A publication in this journal allows me to challenge the leaders in the field to meet a Department of Defense specific need — the need for new synthetic biology chassis organisms, or host cell, and toolkits to build complex circuits in them.”

Read more

Tomi Laurila’s research topic has many quirky names.

‘Nanodiamond, nanohorn, nano-onion…’ lists off the Aalto University Professor, recounting the many nano-shapes of carbon. Laurila is using these shapes to build new materials: tiny sensors, only a few hundred nanometres across, that can achieve great things due to their special characteristics.

Tl.pngFor one, the sensors can be used to enhance the treatment of neurological conditions. That is why Laurila, University of Helsinki Professor Tomi Taira and experts from HUS (the Hospital District of Helsinki and Uusimaa) are looking for ways to use the sensors for taking electrochemical measurements of biomolecules. Biomolecules are e.g. neurotransmitters such as glutamate, dopamine and opioids, which are used by nerve cells to communicate with each other.

Read more

HIV diagnotistic on a USB stick smile


LONDON – Scientists in Britain have developed a type of HIV test using a USB stick that can give a fast and highly accurate reading of how much virus is in a patient’s blood.

The device, created by scientists at Imperial College London and the privately-held U.S. firm DNA Electronics, uses a drop of blood to detect HIV, then creates an electrical signal that can be read by a computer, laptop or handheld device.

The researchers say the technology, although still in the early stages, could allow patients to regularly monitor their virus levels in a similar way to diabetes patients checking their blood sugar levels.

Read more

Aubrey de Grey and Brian Kennedy debate the motion that “Lifespans are long enough” at Intelligence2. This was a great show and the results speak for themselves as do the convincing arguments presented by Brian and Aubrey. If you missed it first time around earlier this year you should watch it now.


“What if we didn’t have to grow old and die? The average American can expect to live for 78.8 years, an improvement over the days before clean water and vaccines, when life expectancy was closer to 50, but still not long enough for most of us. So researchers around the world have been working on arresting the process of aging through biotechnology and finding cures to diseases like Alzheimer’s and cancer. What are the ethical and social consequences of radically increasing lifespans? Should we accept a “natural” end, or should we find a cure to aging?”

On February 3rd, 2016, SRF’s Chief Science Officer Aubrey de Grey joined forces with Buck Institute for Research on Aging President/CEO Brian Kennedy to oppose the motion that “Lifespans Are Long Enough”, in a debate hosted at New York’s Kaufman Center by Intelligence2 Debates. The team proposing the motion comprised Paul Root Wolpe, Director of the Emory Center for Ethics, and Ian Ground of the UK’s Newcastle University.

The event included pre- and post-debate audience votes. While both sides gained ground relative to the opening numbers, the Againsts secured a solid victory — having won over almost twice as many of the initially-undecided audience members as their opponents.

Read more

Tinier than the AIDS virus—that is currently the circumference of the smallest transistors. The industry has shrunk the central elements of their computer chips to fourteen nanometers in the last sixty years. Conventional methods, however, are hitting physical boundaries. Researchers around the world are looking for alternatives. One method could be the self-organization of complex components from molecules and atoms. Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) and Paderborn University have now made an important advance: the physicists conducted a current through gold-plated nanowires, which independently assembled themselves from single DNA strands. Their results have been published in the scientific journal Langmuir.

At first glance, it resembles wormy lines in front of a black background. But what the electron microscope shows up close is that the nanometer-sized structures connect two electrical contacts. Dr. Artur Erbe from the Institute of Ion Beam Physics and Materials Research is pleased about what he sees. “Our measurements have shown that an electrical current is conducted through these tiny wires.” This is not necessarily self-evident, the physicist stresses. We are, after all, dealing with components made of modified DNA. In order to produce the , the researchers combined a long single strand of genetic material with shorter DNA segments through the base pairs to form a stable double strand. Using this method, the structures independently take on the desired form.

“With the help of this approach, which resembles the Japanese paper folding technique origami and is therefore referred to as DNA-origami, we can create tiny patterns,” explains the HZDR researcher. “Extremely small circuits made of molecules and atoms are also conceivable here.” This strategy, which scientists call the “bottom-up” method, aims to turn conventional production of electronic components on its head. “The industry has thus far been using what is known as the ‘top-down’ method. Large portions are cut away from the base material until the desired structure is achieved. Soon this will no longer be possible due to continual miniaturization.” The new approach is instead oriented on nature: molecules that develop complex structures through self-assembling processes.

Read more

Russian scientists have developed a small-radius centrifuge for creating artificial gravity at the International Space Station.

MOSCOW (Sputnik) — A centrifuge to create artificial gravity will be installed aboard an inflatable module developed by Russia at the International Space Station (ISS), the head of Russia’s Institute for Biomedical Problems (RIBP) said Thursday.

“We have created a small-radius centrifuge. This method has been demonstrated to be viable to simulate artificial gravity,” the Russian Academy of Sciences’ RIBP Director Oleg Orlov told reporters.

Read more