Toggle light / dark theme

Researchers connecting pieces of the massive Alzheimer’s puzzle are closer to slotting the next one in place, with yet another link between our guts and brain.

Animal studies have demonstrated Alzheimer’s can be passed on to young mice through a transfer of gut microbes, confirming a link between the digestive system and the health of the brain.

A 2023 study adds further support to the theory that inflammation could be the mechanism through which this occurs.

Richard Scolyer was fully engaged in the business of living when he suddenly received a death sentence. A person more alive would be hard to find. As an endurance athlete competing across the globe, he was in peak physical condition. As one of the world’s leading pathologists on melanoma whose pioneering research has saved thousands of lives, he was in demand. At 56, Prof Richard Scolyer was flying along. His life, he says, was “rich”. And then, on the morning of 20 May 2023, he found himself losing consciousness and convulsing on the floor in a hotel room in Poland, panicking and scared.

After this grand mal seizure, he went for an MRI scan at University hospital in Krakow. It found a mass in his temporal lobe. Scolyer knew immediately it had delivered very bad news.

Related: When I found out about the brain tumour that would kill me, I faced my worst fears – but I chose to take it on.

A team of materials scientists, medical researchers and engineers affiliated with a large number of institutions across Australia has developed a new way to conduct digital light manufacturing that overcomes problems with current methods. In their paper published in the journal Nature, the group describes their new technique, how it works and ways it might be used.

Summary: Neural crest stem cells, a rare type found in skin and other tissues, are uniquely capable of reprogramming into different cell types, challenging the prevailing belief that any mature cell can be reprogrammed. The study reveals that cellular reprogramming is likely limited to these specialized stem cells rather than all mature cells.

Neural crest stem cells are present in skin, bone, and connective tissue, with a natural predisposition for transformation due to their origin in embryonic development. This finding could reshape strategies for stem cell therapies, emphasizing the role of neural crest cells in treating neurodegenerative diseases. The team hopes their work will refine cell reprogramming approaches and inspire further research into the specific potentials of stem cell types.

This has to do with E5, but last I checked they were only doing skin rejuvenation treatments in people.


In Aging Cell, researchers have published their findings that exosomes, which we have previously reported to extend the lives of mice, also extend the lives of rats.

Known to be effective

Exosomes, a subset of extracellular vesicles (EVs), can be visualized as messages and packages that cells send to one another. Along with lifespan studies, EVs have been investigated for their ability to treat liver fibrosis, and they have been identified as potential biomarkers of disease [1].

Cirrhosis, hepatitis infection and other causes can trigger liver fibrosis—a potentially lethal stiffening of tissue that, once begun, is irreversible. For many patients, a liver transplant is their only hope. However, research at Cedars-Sinai in Los Angeles may offer patients a glimmer of hope. Scientists there say they’ve successfully reversed liver fibrosis in mice.

Reporting in the journal Nature Communications, the team say they’ve discovered a genetic pathway that, if blocked, might bring fibrosis to a halt.

The three genes involved in this fibrotic process are called FOXM1, MAT2A and MAT2B.

Discovery advances development of new therapeutic options for cancer and other diseases. A research team led by the University of California, Irvine has engineered an efficient new enzyme that can produce a synthetic genetic material called threose nucleic acid. The ability to synthesize artificial chains of TNA, which is inherently more stable than DNA, advances the discovery of potentially more powerful, precise therapeutic options to treat cancer and autoimmune, metabolic and infectious diseases.

A paper recently published in Nature Catalysis describes how the team created an enzyme called 10–92 that achieves faithful and fast TNA synthesis, overcoming key challenges in previous enzyme design strategies.

Inching ever closer to the capability of natural DNA synthesis, the 10–92 TNA polymerase facilitates the development of future TNA drugs.

A new method developed by Penn State biologists allows them to turn stripped-down plant cells into other types of cells, similar to the way stem cells differentiate into different cell types. Using this method, the research team explored the banding patterns that increase the stability of plant cell walls—much like the corrugated patterns in cardboard—and how they are created. Additionally, the researchers revealed how the assembly of these structures can go astray in different mutant plant cells, which they said could ultimately inform methods to break down plant cells for biofuels.