Toggle light / dark theme

Restorative neuroscience, the study to identify means to replace damaged neurons and recover permanently lost mental or physical abilities, is a rapidly advancing scientific field considering our progressively aging society. Redirecting immature neurons that reside in specific brain areas towards the sites of brain damage is an appealing strategy for the therapy of acute brain injury or stroke. A collaborative effort between the Center for Brain Research of Medical University of Vienna and the National Brain Research Program of Hungary/Semmelweis University in Budapest revealed that some mature neurons are able to reconfigure their local microenvironment such that it becomes conducive for adult-born immature neurons to extensively migrate. Thus, a molecular principle emerges that can allow researchers to best mobilize resident cellular reserves in the adult brain and guide immature neurons to the sites of brain damage.

The adult brain has limited capacity of self-repair.

In the aging Western society, acute brain damage and chronic neurodegenerative conditions (e.g. Alzheimer’s and Parkinson’s diseases) are amongst the most debilitating diseases affecting hundreds of millions of people world-wide. Nerve cells are particularly sensitive to microenvironmental insults and their loss clearly manifests as neurological deficit. Since the innate ability of the adult human brain to regenerate is very poor and confined to its few specialized regions, a key question in present-day neurobiology is how to establish efficient strategies that can replace lost neurons, guide competent cells to the sites of injury and facilitate their functional integration to regain lost functionality. “Cell replacement therapy” thus offers frontline opportunities to design potent therapeutic interventions.

Read more

If you’ve ever wondered how a vaccine given decades ago can still protect against infection, you have your plasma cells to thank. Plasma cells are long-lived B cells that reside in the bone marrow and churn out antibodies against previously encountered vaccines or pathogens.

While are vital components of the immune system, they can also be a contributor to disease, as is the case in autoimmune diseases, such as lupus and rheumatoid arthritis, and in certain cancers, such as multiple myeloma.

Now, a group led by researchers at the University of Pennsylvania School of Veterinary Medicine, has come to a better understanding of how these cells are maintained. Using a specialized type of microscope that captures the movement and interaction of cells in , the scientists observed that, in the , immune cells called regulatory T cells closely interact with plasma cells and support them. When the T cells aren’t there, plasma cells vanish.

Read more

We celebrate her birthday and life but what fun is there to living so long when aging takes its toll? Science is aiming to do better, find out how here!


Today, February 21, is the birthday of Jeanne Louise Calment – the oldest verified human being ever, who managed to live an amazing 122 years and 164 days!

Jeanne was an independent and positive person, and she managed to live all alone until aged 110. After a fire in her apartment she moved into a nursing home, but even there she was still able to take care of herself. However, shortly before her 115th birthday she fell down a stairway and never fully recovered her ability to walk.

Surprisingly, when Jeanne was 118 years old, cognitive tests revealed she scored within the normal range, without signs of dementia. However, by that time she was physically frail and required a wheelchair.

Read more

Rare breeds of chickens could soon come from entirely different types of hens. The University of Edinburgh’s Roslin Institute with help from US biotechnology company Recombinetics used gene editing techniques to create surrogate hens that grow up to produce eggs with all the genetic information of different breeds.

We’ve seen gene editing and transfer techniques used to create better yeast, bigger trees and even glowing pigs, among numerous other examples, but this is believed to be the first gene-edited bird to come out of Europe.

The team used a gene editing tool called TALEN (for transcription activator-like effector nucleases), which is similar to the more widely publicized CRISPR/Cas9, to delete part of a chicken gene called DDX4 that is related to fertility. Hens with this modification did not produce eggs but were healthy in all other ways.

Read more

Mantas from CellAge picks a winner for the iPhone Raffle Reward! ►Campaign Link: https://www.lifespan.io/campaigns/cellage-targeting-senescen…c-biology/ ►Subscribe:
►Reddit AMA: https://www.reddit.com/r/Futurology/comments/5hfmsl/cellage_…ells_with/


Our society has never aged more rapidly – one of the most visible symptoms of the changing demographics is the exponential increase in the incidence of age-related diseases, including cancer, cardiovascular diseases and osteoarthritis. Not only does aging have a negative effect on the quality of life among the elderly but it also causes a significant financial strain on both private and public sectors. As the proportion of older people is increasing so is health care spending. According to a WHO analysis, the annual number of new cancer cases is projected to rise to 17 million by 2020, and reach 27 million by 2030. Similar trends are clearly visible in other age-related diseases such as cardiovascular disease. Few effective treatments addressing these challenges are currently available and most of them focus on a single disease rather than adopting a more holistic approach to aging.

Recently a new approach which has the potential of significantly alleviating these problems has been validated by a number of in vivo and in vitro studies. It has been demonstrated that senescent cells (cells which have ceased to replicate due to stress or replicative capacity exhaustion) are linked to many age-related diseases. Furthermore, removing senescent cells from mice has been recently shown to drastically increase mouse healthspan (a period of life free of serious diseases).

Here at CellAge we are working hard to help translate these findings into humans!

CellAge, together with a leading synthetic biology partner, Synpromics, is going to develop synthetic promoters which are specific to senescent cells (SeneSENSE), as promoters that are currently being used to track senescent cells are simply not good enough to be used in therapies. The most prominently used p16 gene promoter has a number of limitations, for example. As our primary mission is to expand the interface between synthetic biology and aging research as well as drive translational research forward, we will offer senescence reporter assay to academics for free. We predict that in the very near future this assay will be also used as a quality control step in the cell therapy manufacturing process to make cell therapies safer!

Husar, a 38-year-old telecom salesman, had spent most of his life eating the sort of Eastern European fare typical of his native Ukraine: lots of meat, potatoes, salt and saturated fats. DNA Lifestyle Coach suggested his body might appreciate a more Mediterranean diet instead.


Recently, Vitaliy Husar received results from a DNA screening that changed his life. It wasn’t a gene that suggested a high likelihood of cancer or a shocking revelation about his family tree. It was his diet. It was all wrong.

Read more