Researchers at the University of Gothenburg have identified a small molecule, PZL-A, that restores function in the defective POLG enzyme, critical for mitochondrial DNA replication. The compound has shown promise in enhancing mitochondrial function.
A new study from Weill Cornell Medicine provides insights into how cells maintain the tiny end caps of chromosomes as they divide, a key process in keeping cells healthy. Using yeast, the researchers reveal protein interactions that could explain how the enzyme telomerase is tightly regulated to prevent cells from dividing uncontrollably or aging prematurely.
The preclinical study, published April 17 in Nucleic Acids Research, brings us closer to understanding the mechanisms behind aging and cancer.
Before cells divide, they replicate the double-stranded DNA of each chromosome. The replication machinery does a good job of copying the nucleotide sequences until it gets to the telomeres, the end caps of chromosomes that safeguard the genetic material from damage and normally shorten with aging. That’s when telomerase steps in and produces an overhang in which one DNA strand is a little longer than the other.
An international team of microbiologists from the Medical University of Graz, the DSMZ—German Collection of Microorganisms and Cell Cultures (Braunschweig, Germany)—and the University of Illinois (U.S.) has identified and described a previously unknown species of methane-producing archaea in the human gut: Methanobrevibacter intestini sp. nov. (strain WWM1085).
In addition, a new variant of the species Methanobrevibacter smithii, which is referred to as GRAZ-2, was isolated. The scientists have thus taken another important step toward understanding the interaction between humans and the microbiome. The study is published in the International Journal of Systematic and Evolutionary Microbiology.
The development of increasingly sophisticated sensors can facilitate the advancement of various technologies, including robots, security systems, virtual reality (VR) equipment and sophisticated prosthetics. Multimodal tactile sensors, which can pick up different types of touch-related information (e.g., pressure, texture and type of material), are among the most promising for applications that can benefit from the artificial replication of the human sense of touch.
Northwestern Medicine investigators have discovered how disruptions in the circadian rhythm in our muscles combined with poor diet can contribute to the development of diabetes, according to a recent study published in Proceedings of the National Academy of Sciences.
“When we mess up our circadian rhythms through environmental circadian disruption like shift work, jet lag or sleep deprivation, it’s possible that it’s impacting our muscle clocks and metabolism. If that’s happening and we are combining this with an unhealthy diet, this might make it more likely for us to develop glucose intolerance and diabetes,” said Clara Peek, Ph.D., assistant professor of Biochemistry and Molecular Genetics and of Medicine in the Division of Endocrinology, Metabolism and Molecular Medicine, who was senior author of the study.
The body’s natural circadian clock is comprised of proteins called transcription factors that are present throughout the body, including muscle tissue. The clock synchronizes physical and behavioral changes to the external environment during the 24-hour light cycle.
Laser-plasma accelerators can accelerate particles over distances that are up to 1,000 times shorter than those required by conventional accelerators. The technology promises compact systems that have enormous potential to open up new applications for accelerators, for example in medicine or industry. However, the current prototypes have one drawback: most can only accelerate a few particle bunches per second—not enough for practical applications.
DESY’s new flagship laser, KALDERA, has now made a decisive step forward: Driving the compact plasma accelerator MAGMA, the innovative laser has been shown to accelerate 100 particle bunches per second. This increased repetition rate opens the path to actively stabilize the plasma accelerator performance in the future, which will bring it a good deal closer to first applications.
In conventional accelerators, radio-frequency waves are fed into so-called resonators. These waves can give a push to particles passing through them—in most cases electrons—and transfer energy to them. In order to raise the particles to high energy levels, numerous resonators have to be connected in series. This makes the systems long and expensive.
Significant advances in the diagnosis and treatment of congenital heart disease have transformed patient outcomes, leading to an expanding adult congenital heart disease population. Many of these adults require lifelong procedural interventions, frequently performed in catheterization labs under the guidance of echocardiography. This review explores the transesophageal echocardiographic aspect in key catheterization-based procedures.
Alpha-1-antitrypsin is a so-called protease inhibitor, a type of enzyme inhibitor. It is produced in the liver but exerts its effects in the lungs, where it regulates immune cell activity. This regulation is crucial, and an overactive immune response can cause serious lung diseases.
However, some individuals carry a genetic mutation that causes the alpha-1 protein to fold incorrectly. As a result, too little functional alpha-1 is produced, and insufficient amounts reach the lungs.
The mutation is inherited from one or both parents. About 1 in 20 people in Europe carry the heterozygous form of the mutation—inherited from only one parent—and often experience no symptoms or only mild ones. In contrast, the rarer homozygous form, inherited from both parents, affects approximately 1 in 2000 individuals and is much more severe.