Toggle light / dark theme

According to the American Academy of Allergy, Asthma & Immunology, more children are allergic to peanuts than to any other food. Unfortunately, the reactions can be lethal. In western cultures, peanut allergies are the leading cause of food-related anaphylaxis death. Needless to say, therefore, people with such allergies need to be protected against exposure to the nuts – and a skin patch may help provide that protection.

Made by biopharmaceutical company DBV Technologies, the Viaskin Peanut patch is applied to the arm or between the shoulder blades. It gradually delivers small amounts of peanut protein through the skin, allowing the wearer’s body to build up a tolerance for it.

The patch is currently the subject of an ongoing American study conducted by the Consortium of Food Allergy Research, and funded by the National Institute of Allergy and Infectious Diseases.

Read more

NEWS ANALYSIS: The confluence of big data, massively powerful computing resources and advanced algorithms is bringing new artificial intelligence capabilities to scientific research.

WASHINGTON, DC—Massively parallel supercomputing hardware along with advanced artificial intelligence algorithms are being harnessed to deliver powerful new research tools in science and medicine, according to Dr. France A. Córdova, Director of the National Science Foundation.

Córdova spoke Oct. 26 at GPU Technology Conference organized by Nvidia, a company that got its start making video cards for PCs and gaming systems, that now manufactures advanced graphics processor for high-performance servers and supercomputers.

Read more

Drug discovery is a long and difficult process that requires a comprehensive understanding of the molecular structures of compounds under investigation. It’s difficult to have an idea of the precise shape of complex molecules such as proteins, but researchers at University of Melbourne in Australia have come up with a way of seeing the location of individual atoms within biomolecules.

Using quantum bits, most notably utilized in quantum computer research, the investigators offer a way of producing a magnetic resonance sensor and a magnetic field gradient that can work as a tiny MRI machine. The machine would have the resolution capable of seeing single atoms components of larger molecules. This MRI machine has yet to be actually built, but the steps have been laid out based on comprehensive theoretical work. If it proves successful in practice, the technology may overcome current imaging techniques that rely on statistical averages and don’t work well on molecules that don’t crystallize well.

“In a conventional MRI machine large magnets set up a field gradient in all three directions to create 3D images; in our system we use the natural magnetic properties of a single atomic qubit,” said lead author of the research Viktor Perunicic. “The system would be fabricated on-chip, and by carefully controlling the quantum state of the qubit probe as it interacts with the atoms in the target molecule, we can extract information about the positions of atoms by periodically measuring the qubit probe and thus create an image of the molecule’s structure.”

Read more

The decline of birth rate is causing a switch in society between younger workforce and the elderly. The Silver Tsunami is a real issue and one that rejuvenation biotechnology can potentially solve.


Data show productive population age group becoming smaller than the majority, and inadequate government preparation for slew of effects.

Residents of Sinpyeong township in Uiseong County, North Gyeongsang Province, were getting ready for their autumn harvest on Oct. 12. Cutting rice plants was an urgent task, they said — and all of the work is done by local village women in their seventies and older.

Read more

Summary: Brain-to-text system could help people with speech difficulties to communicate, researchers report.

Source: Frontiers.

Recent research shows brain-to-text device capable of decoding speech from brain signals.

Ever wonder what it would be like if a device could decode your thoughts into actual speech or written words? While this might enhance the capabilities of already existing speech interfaces with devices, it could be a potential game-changer for those with speech pathologies, and even more so for “locked-in” patients who lack any speech or motor function.

Read more

Imagine if your electronic wearable device, like your Fitbit, adhered to you like a sticker or temporary tattoo and could read your pulse or measure hand gestures. As electronics are becoming thinner, lighter, and more power efficient, they can be populated on stickers and temporary tattoos to create soft wearables that adhere to the skin. And the most exciting news is that one day you may be able to print these wearable electronics from a home printer.

Carnegie Mellon University’s Mechanical Engineering Professor Carmel Majidi, Ph.D. student Eric Markvicka, and previous postdoctoral fellow Michael Bartlett (now a professor at Iowa State University) have created a method to print skin-mountable electronics in a quick and cost-effective way.

“One of the remaining challenges in skin-mounted electronics is to interface soft circuits with the rigid microchips and electronics hardware required for sensing, digital processing, and power,” said Majidi. “We address this with a breakthrough digital fabrication technique that enables efficient creation of wireless electronics on a soft, water-resistant, medical-grade adhesive.”

Read more

What does the future hold for computing? Experts at the Networked Quantum Information Technologies Hub (NQIT), based at Oxford University, believe our next great technological leap lies in the development of quantum computing.

Quantum computers could solve problems it takes a conventional computer longer than the lifetime of the universe to solve. This could bring new possibilities, such as advanced drug development, superior military intelligence, greater opportunities for and enhanced encryption security.

Quantum computers also present real risks, but scientists are already working on new forms of encryption that even a quantum computer couldn’t crack. Experience tells us that we should think about the applications and implications of quantum computing long before they become reality as we strive to ensure a safe future in the exciting new age of .

Read more

A titanium implant (blue) without a nanofiber coating in the femur of a mouse. Bacteria are shown in red and responding immune cells in yellow. Courtesy of Lloyd Miller/Johns Hopkins Medicine

In a proof-of-concept study with mice, scientists at The Johns Hopkins University show that a novel coating they made with antibiotic-releasing nanofibers has the potential to better prevent at least some serious bacterial infections related to total joint replacement surgery. A report on the study, published online the week of Oct. 24 in Proceedings of the National Academy of Sciences, was conducted on the rodents’ knee joints, but, the researchers say, the technology would have “broad applicability” in the use of orthopedic prostheses, such as hip and knee total joint replacements, as well pacemakers, stents and other implantable medical devices. In contrast to other coatings in development, the researchers report the new material can release multiple antibiotics in a strategically timed way for an optimal effect.

“We can potentially coat any metallic implant that we put into patients, from prosthetic joints, rods, screws and plates to pacemakers, implantable defibrillators and dental hardware,” says co-senior study author Lloyd S. Miller, MD, PhD, an associate professor of dermatology and orthopedic surgery at the Johns Hopkins University School of Medicine.

Read more

Bioquark Inc. (www.bioquark.com) mention on CNBC — the best way to make chemo easier is to eliminate the need for it forever!
recovering patient

Today I’m announcing a $100M commitment to Kernel in an effort to enhance human intelligence and reimagine our future. Unlocking our brain is the most significant and consequential opportunity in history — and it’s time sensitive.

We’re starting to identify the mechanisms underlying neural code and make them programmable. Our biology and genetics have become increasingly programmable; our neural code is next in line. Programming our neural code will enable us to author ourselves and our existence in ways that were previously unimaginable.

I started Kernel in 2016 (read more at the Washington Post) to build the world’s first neural prosthetic for human intelligence enhancement. The investment I’m making in Kernel today will expedite the development of this prosthetic and similarly transformative neurotechnologies.

Read more