Toggle light / dark theme

After getting off its $100 million-plus IPO in the summer, gene editing biotech Intellia Therapeutics is getting ready for human tests of its preclinical CRISPR tech with new digs designed to help bolster its research capabilities.

The biotech, which has the backing and partnerships of the likes of Atlas, Novartis and Regeneron, is on the move as it heads over to its new lab facilities at 40 Erie Street, in Cambridge, MA.

“The field of genome editing is rapidly evolving and our work to develop therapies for patients requires that we have the infrastructure necessary for R&D growth and prepare for preclinical studies and clinical trials,” said Dr. Nessan Bermingham, CEO and founder of Intellia Therapeutics.

Read more

Removing Glucosepane crosslinks from tissue is one of the most important things groups like SENS Research Foundation are doing and their progress relies on our support.


In this interesting open access paper, the authors propose that too little attention has been given to immune cell behavior in tissues rather than in blood, and that means that researchers have overlooked the possibility that age-related changes in the extracellular matrix structures that support tissues might be a significant cause of the growing immune dysfunction that takes place in later life. One of the more important of these changes in the extracellular matrix is the growing presence of cross-links, persistent sugary compounds produced as a byproduct of normal metabolic operations that chain together the large molecules of the extracellular matrix. In doing so these cross-links change the chemical and structural properties of the matrix and the tissue as a whole, producing results such as loss of elasticity in skin and blood vessels, which in turn contribute to a variety of age-related diseases. If cross-linking does indeed contribute to immunosenescence, the decline of the immune system with age, then that only increases the importance of ongoing research funded by the SENS Research Foundation aimed at safely breaking down this unwanted form of metabolic waste. In humans near all persistent cross-links appear to involve a single class of compound, glucosepane. So in theory there is only a single target here, needing just one drug development program to make a large difference to long-term health and longevity.

Read more

This is one of the Nextbigfuture article series reviewing developments in 2016 and looking ahead to developments over the next few years. Here we look at 2016 in space. Later articles will look at medicine, life extension, energy and other areas. Previously we reviewed computers and artificial intelligence

The biggest developments in space in 2016.

SpaceX had several successful launches and landed several rocket stages but had an accident which has grounded SpaceX. They hope to launching again in January 2017.

Read more

Researchers at University of California, Santa Barbara, have designed a functional nanoscale computing element that could be packed into a space no bigger than 50 nanometres on any side.

red blood cell nanotechnology nanotech future timeline

In 1959, renowned physicist Richard Feynman, in his talk “Plenty of Room at the Bottom” spoke of a future in which tiny machines could perform huge feats. Like many forward-looking concepts, his molecule and atom-sized world remained for years in the realm of science fiction. And then, scientists and other creative thinkers began to realise Feynman’s nanotechnological visions.

Read more

You have the power to change the future of medicine and how we treat age-related diseases. Here is an example of how grassroots fundraising is changing science.


Joining the circulatory system of an old with a young animal has been shown to rejuvenate old tissues. Here the authors describe a comparatively simple blood infusion system that allows for the controlled exchange of blood between two animals, and study the effects of a single exchange on various tissues.

Read more

The CellAge AMA is open for questions, come along and ask about biotechnology, senolytics and so on.


Welcome to the CellAge AMA with Mantas Matjusaitis, PhD student in synthetic biology and founder of CellAge. I am here to talk about our work to improve the targeting of dysfunctional “senescent” cells in the body, and thereby aid in their eventual removal. This is important because removal of these cells has been shown to be a critical component in the effort to improve healthy human lifespan.

In short, CellAge is going to develop synthetic DNA promoters which are specific to senescent cells, as the promoters that are currently used for this purpose, such as the p16 gene promoter, suffer from various issues and limitations (not comprehensively targeting all senescent cells, collateral damage in targeting some cells that are not senescent, etc.). You can find more details in our technology video here, and on our Lifespan.io information page.

Seeing as our primary mission is to expand the interface between synthetic biology and aging research, as well as drive translational research forward, we will offer the senescence reporter assay we develop to academics for free. We predict that in the very near future this assay will be also used as a quality control step in the cell therapy manufacturing process to make cell therapies safer.

Read more

In Brief

  • Facebook billionaire Mark Zuckerberg recently opened his wallet in order to create BioHub, a $600 million center that will focus on working to create a human cell directory.
  • By mapping the trillions of cells in the human body, experts would be able to develop new drugs and vaccines to combat — and potentially end — disease.

Last month, we reported on the Human Cell Atlas, a project that plans to provide a detailed reference map of the human body’s trillions of cells. Yes, trillions. Once completed, the project could revolutionize healthcare by giving doctors and researchers a better way to predict, diagnose, and treat diseases.

Initiatives like this need funding – so Facebook billionaire Mark Zuckerberg opened his wallet and founded BioHub, a $600 million center that will focus on helping create a human cell directory. Zuckerberg and his wife, Priscilla Chan, plan to give away $3 billion over 10 years to fight disease, and BioHub is the couple’s first initiative.

Read more

Excellent overview on BMI technology.


Less than a century ago, Hans Berger, a German psychiatrist, was placing silver foil electrodes on his patients’ heads and observing small ripples of continuous electrical voltage emerging from these. These were the first human brain waves to ever be recorded. Since Hans Berger’s first recordings, our knowledge on the brain structure and function has developed considerably. We now have a much clearer understanding of the neuronal sources that generate these electrical signals and the technology that is now available allows us to get a much denser and accurate picture of how these electrical signals change in time and across the human scalp.

The recording and analysis of brain signals has advanced to a level where people are now able to control and interact with devices around them with the use of their brain signals. The field of brain-computer interfaces has in fact garnered huge interest during the past two decades, and the development of low-cost hardware solutions together with the continuously evolving signal analysis techniques, have brought this technology closer to market than ever before.

Research in the field of brain-computer interfaces was primarily propelled by the need of finding novel communication channels for individuals suffering from severe mobility disorders as in the case of patients with locked-in syndrome. People suffering from the condition have a perfectly functioning brain but are trapped inside their body, which no longer responds to the signals being transmitted from their brain.