http://www.blogtalkradio.com/dr-jeanette-gallagher/2018/03/0…sformation
Category: biotech/medical – Page 2,571
Space travel is dangerous for a lot of very obvious reasons — traveling off of Earth on a rocket has its risks, after all — but even when everything goes well it seems that a brief stay in space has the potential to alter a person’s very DNA. That’s the takeaway from a long-term NASA study that used astronaut Scott Kelly and his twin brother Mark as guinea pigs to see how living in space can affect the most basic building blocks of life.
Scott Kelly has spent over 500 days in space overall, but a huge chunk of that came with a single mission which had him stay aboard the International Space Station for 342 days. His brother Mark, who is a retired astronaut, is his identical twin and has the same DNA. This provided a never-before-possible opportunity for NASA to study how long-term space travel affects the human body and the genes that make us who we are. As it turns out, space really does change us, and upon Scott’s return to Earth it was discovered that his DNA has significantly changed.
Don’t Miss : 12 different Nexus smartphones just got deep discounts in Amazon’s one-day sale.
Researchers at Harvard have described a new cancer vaccine approach that uses an injectable biomaterial scaffold to deliver a payload of tumor-specific peptides that stimulate the immune system to respond rapidly to cancer cells.
Abstract
Existing strategies to enhance peptide immunogenicity for cancer vaccination generally require direct peptide alteration, which, beyond practical issues, may impact peptide presentation and result in vaccine variability. Here, we report a simple adsorption approach using polyethyleneimine (PEI) in a mesoporous silica microrod (MSR) vaccine to enhance antigen immunogenicity. The MSR–PEI vaccine significantly enhanced host dendritic cell activation and T-cell response over the existing MSR vaccine and bolus vaccine formulations. Impressively, a single injection of the MSR–PEI vaccine using an E7 peptide completely eradicated large, established TC-1 tumours in about 80% of mice and generated immunological memory. When immunized with a pool of B16F10 or CT26 neoantigens, the MSR–PEI vaccine eradicated established lung metastases, controlled tumour growth and synergized with anti-CTLA4 therapy.
We are making good progress in identifying neural circuits in our brain, small areas responsible for the execution of specific tasks. It is not always the case, actually several tasks are involving many areas in different regions of the brain. Also in this case, however, specific regions host neural circuits whose activity spread around influencing other neural networks. The malfunctioning of these “networks” results in disabilities and the good news is that researchers are starting to find ways to restore (in some cases) the correct working of these neural circuits using drugs.
The problem, however, is that these drugs cannot be delivered through the blood vessels since they would reach “the whole brain” and what is good for a “faulty” circuit may be bad for a “good” circuit. Besides, many drugs cannot flow across the membrane separating the arteries and veins from the brain (the so called blood-brain barrier). This obstacle is exploited by new technologies based on ultrasound beams that can be focussed in a specific place of the brain resulting in the opening of the blood vessels membrane in that area thus letting the drug reach the neurones. This is great but in mot cases it is not enough because the area “flooded” by the drug is still quite large (on a neuronal scale).
Here comes the result from researchers at MIT that have created a way to deliver nanoliter of drugs to areas as small as a cubic millimetre. Again, on the neural scale a cubic millimetre is … well, huge: it contains some 50,000 neurones and 300 million synapses! It is anyhow so much smaller than the area that would be affected by a drug delivered through a blood vessel (even the one that creates a breach into the blood brain barrier), hence it can target much better the faulty circuit without too much effects on other nearby circuits.
The International Papillomavirus Society has announced that Australia could become the first country to eliminate cervical cancer entirely.
According to a new study, Australia’s efforts to distribute a human papillomavirus (HPV) vaccine for free in schools have been a resounding success.
The sexually transmitted infection causes 99.9 percent of cases of cervical cancer.
Some cancer cells express some of the same genes that senescent cells do, so it makes sense that drugs that destroy senescent cells may also destroy cancer cells. This was what the researchers in this new study set out to test.
However, in this experiment, the researchers discovered that the chosen senolytic drugs were not effective at destroying cancer cells with senescence-associated gene expression. While cancer cells and senescent cells do share some common properties, they are also quite different at an epigenetic level.
The researchers did, however, demonstrate that a so-called “suicide gene therapy” that causes both senescent cells and cancer cells to kill themselves worked by targeting senescence-associated p16Ink4a. This approach is similar to that of SENS spin-off company Oisin Biotechnologies, which is using a suicide gene therapy to eliminate senescent cells.
Two pivotal conferences on the topic of “death” coming up!!
First at the INSERM Liliane Bettencourt School on March 16–18 will be “Death: From Cells to Societies — Aging, Dying, and Beyond” -
Then, April 11–13 at Harvard Medical School, will be “Defining Death: Organ transplantation and the 50-year legacy of the Harvard report on brain death”
http://bioethics.hms.harvard.edu/annual-bioethics-conference-2018
An important inflection point for all!!