Toggle light / dark theme

Brendan John Frey FRSC (born 29 August 1968) is a Canadian-born machine learning and genome biology researcher, known mainly for his work on factor graphs, the wake-sleep algorithm for deep learning, and using machine learning to model genome biology and understand genetic disorders. He founded Deep Genomics and is currently its CEO, and he is a Professor of Engineering and Medicine at the University of Toronto. He co-developed a new computational approach to identifying the genetic determinants of disease, was one of the first researchers to successfully train a deep neural network, and was a pioneer in the introduction of iterative message-passing algorithms.

Frey studied computer engineering and physics at the University of Calgary (BSc 1990) and the University of Manitoba (MSc 1993), and then studied neural networks and graphical models as a doctoral candidate at the University of Toronto under the supervision of Geoffrey Hinton (PhD 1997). He was an invited participant of the Machine Learning program at the Isaac Newton Institute for Mathematical Sciences in Cambridge, UK (1997) and was a Beckman Fellow at the University of Illinois at Urbana Champaign (1999).

Following his undergraduate studies, Frey worked as a Junior Research Scientist at Bell-Northern Research from 1990 to 1991. After completing his postdoctoral studies at the University of Illinois at Urbana-Champaign, Frey was an Assistant Professor in the Department of Computer Science at the University of Waterloo, from 1999 to 2001.

In 2001, Frey joined the Department of Electrical and Computer Engineering at the University of Toronto and was cross-appointed to the Department of Computer Science, the Banting and Best Department of Medical Research and the Terrence Donnelly Centre for Cellular and Biomolecular Research. From 2008 to 2009, he was a Visiting Researcher at Microsoft Research, Cambridge, UK, and a Visiting Professor in the Cavendish Laboratories and Darwin College at Cambridge University. Between 2001 and 2014, Frey consulted for several groups at Microsoft Research and acted as a member of its Technical Advisory Board.

In 2014, Frey co-founded Deep Genomics, a Toronto company that develops machine learning methods to model the deep biological architectures that relate genetic mutations to disease. The company’s goal is to bridge the genotype-phenotype gap, which is a pain point in genetic testing, pharmaceuticals, personalized medicine and health insurance.

——-

Full Interview ► https://goo.gl/YYdVUH
BioViva ► http://bioviva-science.com

Liz Parrish is the Founder and CEO of BioViva Sciences USA Inc. BioViva is committed to extending healthy lifespans using gene therapy. Liz is known as “the woman who wants to genetically engineer you,” she is a humanitarian, entrepreneur and innovator and a leading voice for genetic cures. As a strong proponent of progress and education for the advancement of gene therapy, she serves as a motivational speaker to the public at large for the life sciences. She is actively involved in international educational media outreach and sits on the board of the International Longevity Alliance (ILA). She is the founder of BioTrove Investments LLC and the BioTrove Podcasts which is committed to offering a meaningful way for people to learn about and fund research in regenerative medicine. She is also the Secretary of the American Longevity Alliance (ALA) a 501©(3) nonprofit trade association that brings together individuals, companies, and organizations who work in advancing the emerging field of cellular & regenerative medicine with the aim to get governments to consider aging a disease. Parrish received two kinds of injections, which were administered outside the United States: a myostatin inhibitor, which is expected to prevent age-associated muscle loss; and a telomerase gene therapy, which is expected to lengthen telomeres, segments of DNA at the ends of chromosomes whose shortening is associated with aging and degenerative disease.
——-
Facebook: https://www.facebook.com/agingreversed
Tumblr: http://agingreversed.tumblr.com
Twitter: https://twitter.com/Aging_Reversed

Read more

Another bit of science fiction is coming to life as scientists develop a highly elastic and adhesive surgical glue similar to the one Ryan Gosling used to seal his wound in Blade Runner 2049.

Surgeons use sutures, staples, and wires (sometimes in combination with adhesive substances) to facilitate healing of external and internal wounds. These methods, however, are not optimal, especially for reconnecting contracting tissues like those of lungs, arteries and the heart.

Sutures are also not ideal for preventing the leaking of liquids from incisions. In addition, piercing tissues to place sutures can further damage the surrounding wound area and can increase the risk for infection.

Read more

For many of us, remembering faces from 30 years ago can be something of a challenge. But cells in our immune system can remember old foes just fine, and we’ve never really been sure exactly how they manage it.

A new study has filled in missing details on the steps our body takes to remember pathogens, finally revealing the steps our immune cells take to preserve a reference library of past battles.

Scientists from the University of California, Berkeley, used a hydrogen isotope to label white blood cells inside volunteers, and tracked a specially selected virus from infection to immunity in order to record significant steps in the immune process.

Read more