Toggle light / dark theme

Short for Clustered Regularly Interspaced Short Palindromic Repeats, CRISPR is a revolutionary gene editing technique that’s taken the scientific world by storm. Both ultra-precise and easy to access, CRISPR could be the next step towards wiping out genetically inherited diseases and even curing cancers. A host of exciting CRISPR concepts are currently undergoing clinical trials and proof-of-concept experiments, with one particularly controversial focus — human embryos.

A “cut and paste” concept

While there have been rumours coming out of China for years, US scientists have now confirmed that the first attempts to create genetically modified human embryos have been a success. Led by researchers at the Oregon Health and Science University in Portland, the study used CRISPR to change the DNA of multiple one-cell human embryos. Basically, this allowed them to “snip” out segments of a particular genome and switch them with customised replacements. As in previous cases, the embryos were terminated several days after creation to prevent them from developing into foetuses.

Read more

Ten years ago, researchers thought that getting a computer to tell the difference between a cat and a dog would be almost impossible. Today, computer vision systems do it with greater than 99 percent accuracy. How?

Joseph Redmon works on the YOLO (You Only Look Once) system, an open-source method of object detection that can identify objects in images and video — from zebras to stop signs — with lightning-quick speed. In a remarkable live demo, Redmon shows off this important step forward for applications like self-driving cars, robotics and even cancer detection.

Read more

Are these huge solar flares causing massive hurricanes or Man made Climate Change? Interview with Harvard-Smithsonian Solar Physicist Wei-Hock “Willie” Soon about how solar cycle accounts for climate change.


In this exclusive interview, Infowars reporters Millie Weaver and David Knight talk with Harvard-Smithsonian Solar Physicist Wei-Hock “Willie” Soon about how solar cycle account for climate change. Soon uses science to dispel the false notion that C02 emissions are to blame for ‘global warming’ and that it is nothing more than the politicization of pseudoscience for policy makers.

Help us spread the word about the liberty movement, we’re reaching millions help us reach millions more. Share the free live video feed link with your friends & family: http://www.infowars.com/show

I was thinking about this the other day. How far off is using CRISPR for cosmetic changes? permanently changing of eye color, hair color, skin (although that one is gonna be a lightning rod), etc…


In a world-first, Japanese scientists have used the revolutionary CRISPR, or CRISPR/Cas9, genome- editing tool to change flower colour in an ornamental plant. Researchers from the University of Tsukuba, the National Agriculture and Food Research Organization (NARO) and Yokohama City University, Japan, altered the flower colour of the traditional Japanese garden plant, Japanese morning glory (Ipomoea nil or Pharbitis nil), from violet to white, by disrupting a single gene. This research highlights the huge potential of the CRISPR/Cas9 system to the study and manipulation of genes in horticultural plants.

Japanese morning glory, or Asagao, was chosen for this study as it is one of two traditional horticultural model plants in the National BioResource Project in Japan (NBRP). Extensive genetic studies of this plant have already been performed, its genome sequenced and DNA transfer methods established. In addition, as public concern with genetic technologies such as CRISPR/Cas9 is currently a social issue in Japan, studies using this popular and widely-grown plant may help to educate the public on this topic.

The research team targeted a single gene, dihydroflavonol-4-reductase-B (DFR-B), encoding an anthocyanin biosynthesis enzyme, that is responsible for the colour of the plant’s stems, leaves and flowers. Two other, very closely related (DFR-A and DRF-C) sit side-by-side, next to DFR-B. Therefore, the challenge was to specifically and accurately target the DFR-B gene without altering the other genes. The CRISPR/Cas9 system was used as it is currently the most precise method of gene editing.

Read more