Toggle light / dark theme

Moving Beyond Mind-Controlled Limbs to Prosthetics That Can Actually ‘Feel’

Brain-machine interface enthusiasts often gush about “closing the loop.” It’s for good reason. On the implant level, it means engineering smarter probes that only activate when they detect faulty electrical signals in brain circuits. Elon Musk’s Neuralinkamong other players—are readily pursuing these bi-directional implants that both measure and zap the brain.

But to scientists laboring to restore functionality to paralyzed patients or amputees, “closing the loop” has broader connotations. Building smart mind-controlled robotic limbs isn’t enough; the next frontier is restoring sensation in offline body parts. To truly meld biology with machine, the robotic appendage has to “feel one” with the body.

This month, two studies from Science Robotics describe complementary ways forward. In one, scientists from the University of Utah paired a state-of-the-art robotic arm—the DEKA LUKE—with electrically stimulating remaining nerves above the attachment point. Using artificial zaps to mimic the skin’s natural response patterns to touch, the team dramatically increased the patient’s ability to identify objects. Without much training, he could easily discriminate between the small and large and the soft and hard while blindfolded and wearing headphones.

Appl Biochem Biotechnol. 1993 Jun;41:219–31

The 17” x 14” X-ray film, gels, and blots are widely used in DNA research. However, DNA laser scanners are costly and unaffordable for the majority of surveyed biotech scientists who need it. The high-tech breakthrough analytical personal scanner (PS) presented in this report is an inexpensive 1 lb hand-held scanner priced at 2–4% of the bulky and costly 30–95 lb conventional laser scanners. This PS scanner is affordable from an operation budget and biotechnologists, who originate most science breakthroughs, can acquire it to enhance their speed, accuracy, and productivity. Compared to conventional laser scanners that are currently available only through hard-to-get capital-equipment budgets, the new PS scanner offers improved spatial resolution of 20 microns, higher speed (scan up to 17” x 14” molecular X-ray film in 48 s), 1–32,768 gray levels (16-bits), student routines, versatility, and, most important, affordability.

Researchers build a soft robot with neurologic capabilities

In work that combines a deep understanding of the biology of soft-bodied animals such as earthworms with advances in materials and electronic technologies, researchers from the United States and China have developed a robotic device containing a stretchable transistor that allows neurological function.

Cunjiang Yu, Bill D. Cook Associate Professor of Mechanical Engineering at the University of Houston, said the work represents a significant step toward the development of prosthetics that could directly connect with the in biological tissues, offering to , as well as toward advances in soft neurorobots capable of thinking and making judgments. Yu is corresponding author for a paper describing the work, published in Science Advances.

He is also a principal investigator with the Texas Center for Superconductivity at the University of Houston.

The Transhuman Condition of “FOMO” — The Fear of Missing Out

As noted by Dan Ariely, who is a professor of psychology and behavioral economics at Duke University, this “worry that tugs at the corners of our minds is set off by the fear of regret…that we’ve made the wrong decision about how to spend our time.”

Why do such fears rule our day? Perhaps due to the fact that our lives are severely limited, and thus our experiences are confined by an hourglass. Would we reminisce of our past decisions so often if life weren’t so short?


FOMO — the Fear of Missing Out — has been an anxiety of ours since birth. Will our future endeavors provide us a cure or will we continue living and expiring with this constant psychological state?

Scientists Get Green Light To Bring Back Dead To Life With Stem Cells

US biotechnology company called Bioquark has been given permission to recruit 20 clinically dead patients and attempt to bring their central nervous systems back to life. They hope to eliminate patients’ need to rely on machines by reanimating parts of the upper spinal cord, where the lower brain stem is located, to potentially energize vital body functions like breathing and heartbeats.

Trial participants will have been declared certified dead and kept alive solely through life support machines. “This represents the first trial of its kind and another step towards the eventual reversal of death in our lifetime,” said CEO of Bioquark Inc., Ira Pastor.

The team, who has been granted ethical permission from an Institutional Review Board at the National Institutes of Health in the US and India to begin trials on 20 subjects, is looking to recruit patients for its ReAnima Project as soon as possible.

AI-based cytometer detects rare cells in blood using magnetic modulation and deep learning

Detection of rare cells in blood and other bodily fluids has numerous important applications including diagnostics, monitoring disease progression and evaluating immune response. For example, detecting and collecting circulating tumour cells (CTCs) in blood can help cancer diagnostics, study their role in the metastatic cascade and predict patient outcomes. However, because each millilitre of whole blood contains billions of blood cells, the rare cells (such as CTCs) that occur at extremely low concentrations (typically lower than 100‑1000 cells per millilitre) are very difficult to detect. Although various solutions have been developed to address this challenge, existing techniques in general are limited by high cost and low throughput.

Researchers at UCLA Henry Samueli School of Engineering have developed a new cytometry platform to detect rare cells in blood with high throughput and low cost. Published in Light: Science and Applications, this novel cytometry technique, termed magnetically modulated lensless speckle imaging, first uses magnetic bead labelling to enrich the target cells. Then the enriched liquid sample containing magnetic bead-labelled target cells is placed under an alternating magnetic field, which causes the target cells to oscillate laterally at a fixed frequency. At the same time, a illuminates the sample from above and an positioned below the sample captures a high-frame-rate lensless video of the time-varying optical pattern generated by the sample. The recorded spatiotemporal pattern contains the information needed to detect the oscillating .

The researchers built a compact and low-cost prototype of this computational lensless cytometer using off-the-shelf image sensors, laser diodes and electromagnets, and used a custom-built translation stage to allow the imager unit to scan liquid sample loaded in a glass tube. The prototype can screen the equivalent of ~1.2 mL of whole blood sample in ~7 min, while costing only ~$750 and weighing ~2.1 kg. Multiple parallel imaging channels can also be easily added to the system to further increase sample throughput.

Get Dr. Bill Andrews on The Joe Rogan Experience

This purpose of this video is to GET DR. BILL ANDREWS ON THE JOE ROGAN EXPERIENCE. You can help make this reality in many ways. Please start by joining the Facebook group: GET DR. BILL ANDREWS ON THE JOE ROGAN EXPERIENCE: https://www.facebook.com/pg/Get-Dr-Bill-Andrews-on-The-Joe-R…e_internal

I believe we can get closer to reversing human aging by finding stronger human telomerase activators if Dr. Bill Andrews/Sierra Sciences receives more funding ($50 million USD would probably be enough for Dr. Andrews and his team to discover stronger human telomerase activators within a year).

My mission is to drastically improve your life by helping you break bad habits, build and keep new healthy habits to make you the best version of yourself. I read the books and do all the research and share my findings with you!

- My book review of Telomere Lengthening: Curing all diseases including cancer & aging by Dr. Bill Andrews: https://youtube.com/watch?v=5ODN5DIMz6c&t=6s
- telomere shortening does not occur in our human reproductive cells; I (Brent Nally) believe this is why babies are not born the same age as their parents.
- Watch the documentary “The Immortalists” about Dr. Bill Andrews & Dr. Aubrey de Grey: https://theimmortalists.com/watch/?
- Watch my interview of Dr. Aubrey de Grey: https://www.youtube.com/watch?v=TquJyz7tGfk&t=2s
- lack of funding is preventing a cure to human aging.

- Dr. Andrew’s Facebook: https://facebook.com/telomere.bill.andrews
- Dr. Andrew’s LinkedIn: https://linkedin.com/in/william-h-andrews-5455b45/
- Dr. Andrew’s Wikipedia: https://en.wikipedia.org/wiki/William_H._Andrews_(biologist)
- Sierra Sciences website: https://sierrasci.com/
- https://defytime.com/product/telomere-aging-care-capsules/

- Forever Labs 1 year free cryogenic storage discount code ($250 value): BN801

Immune to Cancer | Michael Jensen | TEDxStMarksSchool

What if the future of cancer treatment lies not with stronger drugs and larger doses of radiation that kill cells indiscriminately, but instead harnesses the power of our immune system to destroy cancer cells in our own body? Dr. Michael Jensen shares details of an FDA approved cancer treatment with a 91% cure-rate.

Dr. Michael Jensen is a leader in the field of cancer immunotherapy research. As the founding director of the Ben Towne Center for Childhood Cancer Research at Seattle Children’s Research Institute, Dr. Jensen and his team are pioneering translational research with striking results that just might change the way we think of disease treatment.

This talk was given at a TEDx event using the TED conference format but independently organized by a local community.

New design strategy can help improve layered superconducting materials

Scientists from Tokyo Metropolitan University have created a new layered superconducting material with a conducting layer made of bismuth, silver, tin, sulfur and selenium. The conducting layer features four distinct sublayers; by introducing more elements, they were able to achieve unparalleled customizability and a higher “critical temperature” below which superconductivity is observed, a key objective of superconductor research. Their design strategy may be applied to engineer new and improved superconducting materials.

Once an academic curiosity, superconductors are now at the cutting edge of real technological innovations. Superconducting magnets are seen in everyday MRI machines, for , not to mention the new Chuo Shinkansen maglev train connecting Tokyo to Nagoya currently being built. Recently, a whole new class of “layered” superconducting structures have been studied, consisting of alternate layers of superconducting and insulating two-dimensional crystalline layers. In particular, the customizability of the system has garnered particular interest in light of its potential to create ultra-efficient thermoelectric devices and a whole new class of “high temperature” superconducting materials.

A team led by Associate Professor Yoshikazu Mizuguchi from Tokyo Metropolitan University recently created a sulfide based layered superconductor; their work has already revealed novel thermoelectric properties and an elevated “critical temperature” below which superconductivity is observed. Now, working with a team from the University of Yamanashi, they have taken a multi-layered version of the system, where the conducting layer consists of four , and begun swapping out small proportions of different atomic species to probe how the material changes.