Toggle light / dark theme

The Food and Drug Administration on Wednesday approved a new antibiotic that, when combined with two existing antibiotics, can tackle the most formidable and deadly forms of tuberculosis. The trio of drugs treats extensively drug-resistant tuberculosis (XDR-TB), along with cases of multidrug-resistant tuberculosis (MDR-TB) that have proven unresponsive to other treatments.

Tuberculosis is the single leading infectious killer in the world, infecting an estimated 10 million people in 2017 and killing 1.6 million of them. XDR-TB and MDR-TB are even more savage forms of the disease, which is caused by the bacterium Mycobacterium tuberculosis. The drug-resistant strains of TB kill an estimated 60% and 40% of their victims, respectively.

MDR-TB strains can resist at least the two most powerful anti-TB drugs, isoniazid and rifampin. A strain gets into XDR-territory when they also become resistant to any fluoroquinolone drug, such as ciprofloxacin or levofloxacin, plus at least one of three injectable second-line drugs, which are amikacin, kanamycin, and capreomycin. Drug-resistant strains of tuberculosis infected an estimated 558,000 people in 2017.

A team of scientists at UC San Francisco and the National Institutes of Health have achieved another CRISPR first, one which may fundamentally alter the way scientists study brain diseases.

In a paper published August 15 in the journal Neuron, the researchers describe a technique that uses a special version of CRISPR developed at UCSF to systematically alter the activity of in human neurons generated from , the first successful merger of stem cell-derived cell types and CRISPR screening technologies.

Though mutations and other genetic variants are known to be associated with an increased risk for many , technological bottlenecks have thwarted the efforts of scientists working to understand exactly how these genes cause .

A new study outlines multiple ways in which epiblast stem cells can be reprogrammed back into a fully pluripotent state, paving the way for a better understanding of epigenetics.

The role of epigenetics

Epigenetics are why our cells, which all have the same DNA, differ in function. A bone cell has the same genetics as a nerve cell, but its epigenetic switches instruct it to perform the functions of a bone cell and not a nerve cell. Epigenetic alterations, however, are one of the primary hallmarks of aging. As we age, harmful epigenetic switches are activated and beneficial ones are deactivated, causing age-related dysfunction. This may even lead to inflammation, which causes further epigenetic damage, leading to a dangerous feedback loop.

A new organ involved in the sensation of pain has been discovered by scientists, raising hopes that it could lead to the development of new painkilling drugs.

Researchers say they have discovered that the special cells that surround the pain-sensing nerve cells that extend into the outer layer of skin appear to be involved in sensing pain – a discovery that points to a new organ behind the feeling of “ouch!”.

A research group at ETH Zurich, Switzerland, has made it possible to edit hundreds of genes at once with CRISPR gene editing.

CRISPR gene editing has revolutionized the biotech industry by providing an easy and quick way to genetically modify organisms. So far, however, CRISPR techniques have only managed to edit a maximum of seven genes at once. This limits the potential of the technique in creating cell therapies, since whole networks of genes need to be reprogrammed to control each cell’s fate.

The Swiss research group devised a way to overcome this limitation with a CRISPR technique able to edit 25 genes in one go. This number could also be increased to up to hundreds of genes at a time. This method therefore makes it possible to edit gene networks, and reprogram stem cells to become cell therapies such as skin cells or insulin-producing pancreatic cells.

Most people who’ve been jabbed by a needle know the drill: First the pierce, then the sharp, searing pain and an urge to pull away, or at least wince. While the exact circuitry behind this nearly universal reaction is not fully understood, scientists may have just found an important piece of the puzzle: a previously unknown sensory organ inside the skin.

Dubbed the nociceptive glio-neural complex, this structure is not quite like the typical picture of a complex organ like the heart or the spleen. Instead, it’s a simple organ made up of a network of cells called glial cells, which are already known to surround and support the body’s nerve cells. In this case, the glial cells form a mesh-like structure between the skin’s outer and inner layers, with filament-like protrusions that extend into the skin’s outer layer. (Also find out about a type of simple organ recently found in humans, called the interstitium.)

As the study team reports today in the journal Science, this humble organ seems to play a key role in the perception of mechanical pain—discomfort caused by pressure, pricking, and other impacts to the skin. Until now, individual cells called nociceptive fibers were thought to be the main starting points for this kind of pain.

Dr. Michael West, CEO of AgeX Therapeutics and Founder of Geron Corporation, discusses breakthroughs in the understanding of biological regeneration and in induced tissue regeneration, through his talk “Hayflick Rewound: Somatic Restriction, Epigenetics, and the Reversibility of Human Aging”. This talk was given at the Ending Age-Related Diseases conference in NYC. Join us at http://lifespan.io/hero

►Conference Page: https://www.leafscience.org/ending-age-related-diseases-adva…prospects/
►Subscribe for more: https://www.youtube.com/user/LifespanIO?sub_confirmation=1
►This video is presented by LEAF. Please support our work by becoming a “Lifespan Hero”: http://lifespan.io/hero

► #LifeExtension #MichaelWest #AgeX