Menu

Blog

Archive for the ‘biotech/medical’ category: Page 1928

Jul 1, 2019

This New Mind-Controlled Robot Arm Works Without a Brain Implant

Posted by in categories: biotech/medical, robotics/AI

If you want to control a robot with your mind — and really, who doesn’t? — you currently have two options.

You can get a brain implant, in which case your control over the robot will be smooth and continuous. Or you can skip the risky, expensive surgery in favor of a device that senses your brainwaves from outside your skull — but your control over the bot will be jerky and not nearly as precise.

Continue reading “This New Mind-Controlled Robot Arm Works Without a Brain Implant” »

Jul 1, 2019

IEEE: ABSTRACT:

Posted by in category: biotech/medical

In this paper, we characterize and discriminate between normal and cancer cells from three different tissue types, liver, lung, and breast, using capacitance–voltage-based extracted set of parameters. Cells from each type of cancer cell line were suspended in a liquid media either individually or as mixtures with their normal counterparts. Empirically, normal cells were observed to exhibit higher dielectric constants when compared to cancer cells from the same tissue. Moreover, adding cancer cells to normal cells was observed to increase the capacitance of normal cells, and the extent of this increase varied with the type of tissue tested with the lung cells causing the greatest change. This shows that the cancer cells of different cell origin possess their own signature electrical parameters, especially when compared with their normal counterparts, and that cancer cell seems to affect normal cells in a different manner, depending upon the tissue type. It was also noticed that the cells (both cancer and normal) exhibited a higher dielectric value as per the following order (from least to most): breast, lung, and liver. The changes in electrical parameters from normal to cancer state were explained not only by the modification of its physiological and biochemical properties but also by the morphological changes. This approach paves the way for exploring unique electrical signatures of normal and their corresponding cancer cells to enable their detection and discrimination.

Jul 1, 2019

Smart glasses follow our eyes, focus automatically

Posted by in categories: biotech/medical, virtual reality

Though it may not have the sting of death and taxes, presbyopia is another of life’s guarantees. This vision defect plagues most of us starting about age 45, as the lenses in our eyes lose the elasticity needed to focus on nearby objects. For some people reading glasses suffice to overcome the difficulty, but for many people the only fix, short of surgery, is to wear progressive lenses.

“More than a billion people have presbyopia and we’ve created a pair of autofocal lenses that might one day correct their vision far more effectively than traditional glasses,” said Stanford electrical engineer Gordon Wetzstein. For now, the prototype looks like virtual reality goggles but the team hopes to streamline later versions.

Wetzstein’s prototype glasses—dubbed autofocals—are intended to solve the main problem with today’s progressive lenses: These traditional glasses require the wearer to align their head to focus properly. Imagine driving a car and looking in a side mirror to change lanes. With progressive lenses, there’s little or no peripheral focus. The driver must switch from looking at the road ahead through the top of the glasses, then turn almost 90 degrees to see the nearby mirror through the lower part of the lens.

Jul 1, 2019

Anti-Aging Approaches

Posted by in categories: bioengineering, biotech/medical, life extension

Sirtuins can be activated by a lack of amino acids or of sugar, or through an increase in NAD. — David Sinclair If you have not heard of #davidsinclair then it is time you have. he is at the forefront of anti aging research and one of my heroes. While we wait for the miracle pills there are alot of thing we can do to help us age better already. #biohacking #biohacker


Can a single molecule extend lifespan?

Jul 1, 2019

Researchers develop a lab-grown blood vessel graft from natural polymers with regenerative properties

Posted by in category: biotech/medical

Researchers may be closer to improving the lives of people with coronary artery disease and children born with pediatric congenital cardiovascular defects through the development of a new vascular graft created by Johns Hopkins engineers that takes less than one week to make and has regenerative properties.

Coronary artery disease, or CAD, is the leading cause of death worldwide and people with the disease often require surgery to repair damaged cardiovascular . Bypass surgery, another common intervention, requires removing the damaged tissue and replacing it with from another part of the body, such as the saphenous vein, which runs the length of the leg and is the longest vein in the body. This method puts substantial stress on the body and has other risk factors: it requires patients to have multiple surgical sites, and those in need of the surgery because of plaque build-up may also have plaque accumulation in the grafted vein, causing further complications.

Congenital cardiovascular defects, or CCD, occurs in 1% of live births worldwide, and children born with the condition often undergo repeated surgical reconstruction as they grow. But repeated surgeries reduce the amount of usable vascular tissue for reconstruction and synthetic grafts do not grow as the child grows.

Jul 1, 2019

Cancer cell’s ‘self eating’ tactic may be its weakness

Posted by in categories: biotech/medical, education, food

Cancer cells use a bizarre strategy to reproduce in a tumor’s low-energy environment; they mutilate their own mitochondria! Researchers at Cold Spring Harbor Laboratory (CSHL) also know how this occurs, offering a promising new target for pancreatic cancer therapies.

Why would a cell want to destroy its own functioning mitochondria? “It may seem pretty counterintuitive,” admits M.D.-Ph. D. student Brinda Alagesan, a member of Dr. David Tuveson’s lab at CSHL.

Continue reading “Cancer cell’s ‘self eating’ tactic may be its weakness” »

Jul 1, 2019

It’s Hard to Kill Blood Stem Cells—Now We Know Why

Posted by in categories: biotech/medical, life extension

For most of their lives, our hematopoietic stem cells (HSCs)—which produce all of our blood and immune cells—are quiet and inactive. But they also are the toughest cells in the blood system, able to survive exposure to levels of radiation or viral infections that kill most other blood cells.

A new study from researchers in Columbia’s Stem Cell Initiative has discovered how HSCs cheat death, which could lead to new therapies for blood cancers and other diseases related to aging and improve stem cell transplantation.

Jul 1, 2019

The Mycelium Revolution Is Upon Us

Posted by in categories: biotech/medical, food

All hail the mushroom king :P.


It’s the fungus mushrooms are made of, but it can also produce everything from plastics to plant-based meat to a scaffolding for growing organs—and much more.

  • By Eben Bayer on July 1, 2019

Jul 1, 2019

Female bed bugs ‘control’ their immune systems ahead of mating to prevent against STIs

Posted by in categories: biotech/medical, food

Female bedbugs who are ‘full bellied’ and therefore more attractive mates for males, are able to boost their immune systems in anticipation of catching sexually transmitted infections, research has found.

Led by the University of Sheffield, the research discovered a correlation between fed females and the chances of them being inseminated and therefore infected as a result.

To mitigate this, female bedbugs that have just dined on blood and are therefore full, are able to cleverly manage their simple in anticipation of mating. This is in comparison to female bedbugs that do not get regular food, do not mate regularly and therefore do not have the same need to boost their immune system in defence of .

Jul 1, 2019

Massachusetts Institute of Technology

Posted by in categories: biotech/medical, chemistry

DARPA-funded chemists at the Massachusetts Institute of Technology (MIT) have devised a way to rapidly synthesize and screen millions of novel proteins that could be used as drugs against Ebola and other viruses. The team supports DARPA’s Fold F(x) synthetic chemistry program.


MIT News OfficeBuilding 11–400 Massachusetts Institute of Technology • Cambridge, MA 02139–4307.