Toggle light / dark theme

We are all aware of the health benefits of regular exercise, but what if we could reap the rewards of a good workout without any of the effort? Michigan Medicine researchers have found that a conserved class of proteins known as Sestrins can mimic many of the beneficial effects of exercise on metabolism in flies and mice, and boost their physical endurance. The findings could eventually help scientists to devise strategies that combat muscle wasting due to aging or disease. “These results indicate that Sestrin is a key integrating factor that drives the benefits of chronic exercise to metabolism and physical endurance … Sestrin may serve as a promising therapeutic molecule for obtaining exercise-like benefits such as improving mobility and metabolism,” commented the researchers, headed by Myungjin Kim, PhD, a research assistant professor in the department of molecular & integrative physiology, and first author of the team’s published paper in Nature Communications, which is titled, “Sestrins are evolutionarily conserved mediators of exercise benefits.”

As the percentage of older members in the population continues to increase, so do concerns about keeping an aging population healthy and mobile. In fact, elderly people put mobility as their biggest age-related concern, the authors stated. “Mobility is important both for direct health reasons (e.g., preventing falls, retaining access to relatives and health care providers) and for psychological reasons, as it is highly correlated with retained morale personal satisfaction and morale.”

One promising therapeutic intervention that can help to hold back age-related functional decline is endurance exercise, they noted. But endurance exercise isn’t suitable for everyone. While evidence in humans and other animals suggests that endurance exercise has substantially protective effects on measures of healthspan, not everyone can train to the level needed to achieve the resulting health benefits, perhaps due to age, injury, or illness. “Therefore, generation of therapeutic mimetics to induce the benefits of exercise could provide broad ranging benefits to the medical community,” the researchers suggested.

In the popular book The Demon in the Machine, physicist Paul Davies argues that what’s missing in the definition of life is how biological processes create “information,” and such information storage is the stuff of life, like a bird’s ability to navigate or a human’s ability to solve complex problems. The “Demon” Davies refers to is Maxwell’s Demon, as proposed by 19th century physicist James Clerk Maxwell as a thought experiment. Maxwell’s hypothetical “demon” controls a gate between two chambers of gas and knows when to open the gate only to allow gas molecules moving faster than average to pass through it. This way, a chamber could be heated and create “energy” to be put to work. Such a demon would amount to a workaround of the Second Law of Thermodynamics. And that, as we know, is impossible. We also know, of course, that demons don’t exist.

However, living things use many protein devices called enzymes that mimic such a demon each time a muscle contracts or when any chemical reaction needs to be driven uphill and away from thermodynamic equilibrium like the gas molecules chosen by the demon. How these dynamic machines work has long been puzzling. Over the past 75 years, scientists have chipped away at this problem without identifying precise details of how any of these enzyme machines accomplishes the sleight of hand that sustains living things, such as humans who live in a chemical state far from equilibrium.

For the first time, in a paper published in Proteins: Structure, Function, and Bioinformatics by Charlie Carter, Ph.D., professor in the Department of Biochemistry and Biophysics at the UNC School of Medicine, and supported by the National Institute of General Medical Sciences, describes the details that enable one such machine to work like Maxwell’s demon.

Underdog Pharma is developing disease-modifying treatments for atherosclerosis and other age-related diseases.

They want to prevent or reverse atherosclerosis by removing a harmful lipid known as 7-ketocholesterol (7KC) from the arterial walls.

Underdog has a molecule that can extract the oxidized waste from the body. It is a variant of cyclodextrin which is an existing drug that is already approved by the FDA and has a good safety profile.

In microbiology, an electroporator is a tool that allows scientists to apply electricity to a cell to temporarily breach its cell wall so you can introduce chemicals, drugs or DNA to the cell. These tools are extremely useful in the lab, but they’re also very expensive. They cost anywhere from roughly $3,000 to $10,000.

Researchers at Georgia Tech just revealed they’ve found a way to create an electroporator that costs next to nothing to make. Their research was just published in the journal PLOS Biology.

These researchers were able to create a version of the electroporator that can generate short bursts of more than 2,000 volts of electricity, which they named the “ElectroPen,” using a crystal from a common lighter, copper-plated wire, heat-shrinking wire insulator and aluminum tape. They then created a case for these components using a 3D printer. They claim you can assemble it within 15 minutes once you have all the pieces.

https://www.usf.edu/…/neuroscientists-discover-brain-pressu…

If you found this article interesting please like and share it from our Facebook page: https://m.facebook.com/story.php?story_fbid=511500699478279&id=383136302314720


Researchers at the University of South Florida have discovered a novel feedback pathway from the brain to the eye that modulates eye pressure – a significant advancement in the effort to diagnose and treat glaucoma. Glaucoma is associated with increased pressure in the eye due to a reduce ability of the eye to maintain proper fluid drainage. The heightened pressure applies mechanical strain to the optic nerve as the nerve exits the eye, resulting in vision loss and potential blindness.

It has long been hypothesized that brain pressure might also play a role in glaucoma because the amount of strain on the optic nerve depends not just on eye pressure, but the difference in pressure between the eye and brain. The groundbreaking study published in the Journal of Physiology shows, for the first time, that eye and brain pressure are physiologically connected. The neuroscientists came to this conclusion by altering brain pressure in animal models and noting changes in the fluid drainage properties of the eye that could be blocked by chemicals that eliminate feedback signals from the brain. Interestingly, the eye’s ability to clear fluid changed in a manner that restored a healthy pressure difference across the optic nerve.

Tooth loss is a concern that most people will face at some point in their life. According to studies, by the age of 74, 26 percent of adults will have lost all of their permanent teeth. Dentures are sufficient, but they’re uncomfortable and dental implants can fail and have no ability to “remodel” as the surrounding jaw bone changes with age.

All of these are reasons why some people have placed their hope in stem cell research. While there are controversy surrounds the new medical method such as the use and destruction of human embryos, not all research involves human tissue and has the potential to change a lot of lives.

A new technique being tested in the Tissue Engineering and Regenerative Medicine Laboratory of Dr. Jeremy Mao, Edward V. Zegarelli prof of odontology, and a professor of biomedical engineering at Columbia University, could make “tooth loss” a thing of the past. The cluster believes they need to find some ways to own the body’s stem cells, migrate it to a three-dimensional scaffold manufactured from natural material and insert it to a patient’s mouth.

ANN ARBOR, Mich. — Given the option, would you avoid the gym altogether and simply pop a pill or drink a supplement that brings about the same benefits as a workout? It sounds farfetched, but the idea of lounging around all day yet still enjoying the health benefits of an intense workout may soon be possible. While there are still many details to be worked out, researchers at the University of Michigan say that the naturally occurring protein Sestrin appears to mimic the effects of exercise on both flies and mice in experimental trials.

These findings could have far reaching implications across the fitness, medical, and scientific fields. For instance, Sestrin could conceivably help individuals unable to work out due to old age or health problems maintain their muscles.

“Researchers have previously observed that Sestrin accumulates in muscle following exercise,” explains Myungjin Kim, Ph.D., a research assistant professor in the Department of Molecular & Integrative Physiology, in a release.

Brain cancer remains challenging to diagnose, due to nonspecific symptoms and a lack of cost-effective tests. A new blood test that uses attenuated total reflection (ATR)-Fourier transform infrared (FTIR) spectroscopy in conjunction with machine learning technology, may help advance the detection of brain cancer.

The patented technology, developed by a team at the University of Strathclyde, uses infrared light to produce a “bio-signature” of a blood sample and applies artificial intelligence to check for the signs of cancer.

The research is published in Nature Communications in a paper titled, “Development of high-throughput ATR-FTIR technology for rapid triage of brain cancer.