Topline : Thousands of at-home coronavirus antibody tests, used to detect whether someone has had and is potentially resistant to the virus, will be made available in the U.K. within days, a public health director has said, following calls for more frontline workers to be tested.
Category: biotech/medical – Page 1871
Researcher from Peking University says new treatment could stop pathological memories.
Five critically ill COVID-19 patients got better after receiving the treatment. Three have left the hospital and two are in stable condition.
A shrimp peddler at the Chinese market where the coronavirus pandemic likely began has been identified as one of the first victims of the disease — and possibly “patient zero.”
The 57-year-old woman, identified by the Wall Street Journal as Wei Guixian, was the first person from the now-notorious Huanan market in Wuhan to test positive for the deadly bug.
She was at work Dec. 10 when she developed what she thought were cold symptoms, Chinese outlet The Paper reported. So she walked to a small local clinic for treatment and then went back to work — likely spreading the contagion.
A large team of researchers affiliated with multiple institutions in and around Hangzhou, China, has taken a very large step toward the creation of a comprehensive human single-cell atlas. In their paper published in the journal Nature, the group describes how they sequenced the RNA of over a half-million single cells donated by volunteers and processed the information to present it in a way that could be used in a single-cell atlas.
All of the cells in the human body carry the same basic genetic information—they differ in which genes are expressed. Those genes that are expressed define the function of a given cell. For some time, medical researchers have wanted an atlas that would describe which genes are expressed in cells in all parts of the body. Such an atlas would help scientists better understand the functions of cells and how they work together, in addition to saving time on new research efforts. Atlases have been created for some tissue types, but currently, there is no single atlas to cover all of the cell types in the human body. Creating such an atlas would require much time and effort over many years, as the human body has over 30 trillion cells, after all. In this new effort, the researchers have taken a large step toward that goal by providing gene expression information for over 500,000 cells from different parts of the body (and some from fetal tissue), including all of the major organs.
The work involved first obtaining the tissue samples and then processing them. To that end, the cells were first isolated by putting some in a centrifuge and using enzymes with others. Once isolated, each of the cells were sequenced using a special tool the team previously developed called Microwell-seq—it allows for fast sequencing of large numbers of cells. In all, the team sequenced cells from 60 types of tissue. The researchers then generated a map using a method they devised for classifying cell information. The map and its underlying data form the basis of what could become a full, comprehensive single-cell database.
Sandia National Laboratories distinguished technical staff member Juan Elizondo-Decanini developed a new configuration for neutron generators by turning from conventional cylindrical tubes to the flat geometry of computer chips. The Neutristor is an ultra-compact, disposable, neutron generator 1000 times smaller than the closest competitor. The most practical application, and the most likely to be near-term, would be a tiny medical neutron source implanted close to a tumor that would allow cancer patients to receive a low neutron dose over a long period at home instead of having to be treated at a hospital. Elizondo-Decanini says the technology is ready to be licensed for some commercial applications, but other more complex commercial applications could take five to ten years.
In people who have recovered, plasma is teeming with antibodies that may fight the virus. But the treatment beginning in New York is experimental.
#JustSaying
The Prime Minister of England has coronavirus. The Health Minister of England has coronavirus.
Google Scholar
Posted in biotech/medical, quantum physics
Based on a lot of study it may be possible that if naturally derived dmt having quantum entanglement properties that someday it could be used to naturally teleport people. Especially if can essentially have suppositions properties that it may in fact allow an interdimensional portal quantum mechanically speaking it also said that cannabis did not start on earth either and is an alien plant. It may that someday we could take a pill to teleport through the fabric of space time with a biochemical means but it would involve a sort higgs mode or higgs boson level quantum teleportation for that amount of energy. But it may eventually lead to real teleportation in human beings naturally someday since it already holds those properties.
Making sense of cells
Posted in biotech/medical, computing, food, mathematics, neuroscience
Our body’s ability to detect disease, foreign material, and the location of food sources and toxins is all determined by a cocktail of chemicals that surround our cells, as well as our cells’ ability to ‘read’ these chemicals. Cells are highly sensitive. In fact, our immune system can be triggered by the presence of just one foreign molecule or ion. Yet researchers don’t know how cells achieve this level of sensitivity.
Now, scientists at the Biological Physics Theory Unit at Okinawa Institute of Science and Technology Graduate University (OIST) and collaborators at City University of New York have created a simple model that is providing some answers. They have used this model to determine which techniques a cell might employ to increase its sensitivity in different circumstances, shedding light on how the biochemical networks in our bodies operate.
“This model takes a complex biological system and abstracts it into a simple, understandable mathematical framework,” said Dr. Vudtiwat Ngampruetikorn, former postdoctoral researcher at OIST and the first author of the research paper, which was published in Nature Communications. “We can use it to tease apart how cells might choose to spend their energy budget, depending on the world around them and other cells they might be talking to.”
By bringing a quantitative toolkit to this biological question, the scientists found that they had a different perspective to the biologists. “The two disciplines are complimentary to one another,” said Professor Greg Stephens, who runs the unit. “Biologists tend to focus on one area and delve deeply into the details, whereas physicists simplify and look for patterns across entire systems. It’s important that we work closely together to make sure that our quantitative models aren’t too abstract and include the important details.”
On their computers, the scientists created the model that represented a cell. The cell had two sensors (or information processing units), which responded to the environment outside the cell. The sensors could either be bound to a molecule or ion from the outside, or unbound. When the number of molecules or ions in chemical cocktail outside the cell changed, the sensors would respond and, depending on these changes, either bind to a new molecule or ion, or unbind. This allowed the cell to gain information about the outside world and thus allowed the scientists to measure what could impact its sensitivity.