Toggle light / dark theme

Scientists investigating Alzheimer’s treatments at the Salk Institute have uncovered some key mechanisms that enable an experimental drug to reverse memory loss in mouse models of the disease. The discovery not only bodes well for the possibility of clinical trials, but provides researchers with a new target to consider in the wider development of compounds to counter the degenerative effects of the condition.

The research centers on a drug called CMS121, which is a synthetic version of a chemical called fisetin that occurs naturally in fruits and vegetables. The Salk team’s previous studies concerning CMS121 have produced some very promising results, with one paper published last year describing how the drug influences age-related metabolic pathways in the brain, protecting against the type of degeneration associated with Alzheimer’s. This followed earlier studies demonstrating how fisetin can prevent memory loss in mice engineered to develop Alzheimer’s.

Work continues at Salk to understand how exactly fisetin and the synthetic variant CMS121 produces these anti-aging effects on the brain. In their latest study, the researchers again turned to mice engineered to develop Alzheimer’s, which were administered daily doses of CMS121 from the age of nine months. This is the equivalent to middle age in humans, with the mice already exhibiting learning and memory problems before the treatment began.

Bay Area based artist-inventor and amateur mycologist Phil Ross has an international patent pending on a method of producing fungus as a sustainable construction material. It may be surprising to hear that a biodegradable, durable, and non-toxic building material is on sale in the vegetable aisle at the supermarket. However, it’s not the tasty caps that Ross is after, but the root-like fibers of mushrooms form an enormous underground tangle called mycelium. Dried mycelium forms a lightweight mold and water resistant fire-proof material that is an effective insulator. It is also very sturdy stuff. Bob Engels of Gourmet Mushrooms notes, “Hardened steel blades on equipment at our farm need regular attention following their encounters with these massed threads of hyphae.”

Ross reported that multiple saw blades and metal files were destroyed while shaping the five hundred mycelium bricks he grew into an archway. The archway was a 6×6 foot sculpture titled Mycotectural Alpha, and was likely the first man-made structure made entirely out of mushrooms. Others have taken notice of the potential of fungus—a new start-up called Evocative Design producing mycelium alternatives to styrofoam and insulation material has received grants from the National Science Foundation, the Environmental Protection Agency, and the Department of Agriculture.

Ross’s “biotechnical” artwork encompasses drawings, paintings, sculptures, prototypes, and extensive materials research. Over the past 15 years he has been experimenting with fungus, growing and shaping mushrooms in sterile laboratory-like environments, even learning to make his own air filters to provide the necessary clean air. He says mycelium bricks can be grown in about a week from a mixture poured into a mold, but the more organic-looking mushroom sculptures that are created by adding or subtracting gas or air from their growing environment can take years to create. the artist explains how the “myotecture” bricks are made:

In a bitter paradox, antibiotics fuelled the growth of the twentieth century’s most profitable pharmaceutical companies, and are one of society’s most desperately needed classes of drug. Yet the market for them is broken. For almost two decades, the large corporations that once dominated antibiotic discovery have been fleeing the business, saying that the prices they can charge for these life-saving medicines are too low to support the cost of developing them. Most of the companies now working on antibiotics are small biotechnology firms, many of them running on credit, and many are failing.


Paratek Pharmaceuticals successfully brought a new antibiotic to the market. So why is the company’s long-term survival in question?

Circa 2018


Measuring one million times less than the width of a human hair, graphene is harder than diamonds and 200 times stronger than steel. Small, strong, and flexible, it is the most conductive material on earth and has the potential to charge a cell phone in just five seconds or to upload a terabit of data in one. It can be used to filter salt from water, develop bullet-stopping body armor, and create biomicrorobots.

These incredible properties have captured the attention of scientists and industry specialists around the world, all seeking to harness graphene’s potential for applications in electronics, energy, composites and coatings, biomedicine, and other industries.

Derived from graphite, the same graphite used in pencils and many other common use products, graphene is, ironically, one of the most expensive materials on the planet. This is because the process of chemically peeling off, or exfoliating, a single layer of graphene from graphite ore is cost-prohibitive on an industrial scale.