Toggle light / dark theme

Newly developed model of DNA sheds light on molecule’s flexibility

Knowledge of how DNA folds and bends could offer new perspective on how it is handled within cells while also aiding in the design of DNA-based nano-scale devices, says a biomedical engineer at Texas A&M University whose new motion-based analysis of DNA is providing an accurate representation of the molecule’s flexibility.

The model, which is shedding new light on the physical properties of DNA, was developed by Wonmuk Hwang, associate professor in the university’s Department of Biomedical Engineering, and his Ph.D. student Xiaojing Teng. Hwang uses computer simulation and theoretical analysis to study biomolecules such as DNA that carry out essential functions in the human body. His latest model, which provides a motion-based analysis of DNA is detailed in the scientific journal ACS Nano. The full article can be accessed at http://pubs.acs.org/doi/abs/10.1021/acsnano.5b06863.

In addition to housing the genetic information needed to build and maintain an organism, DNA has some incredibly interesting physical properties that make it ideal for the construction of nanodevices, Hwang notes. For example, the DNA encompassed within the nucleus of one human cell can extend to four feet when stretched out, but thanks to a number of folds, bends and twists, it remains in a space no bigger than one micron – a fraction of the width of a human hair. DNA also is capable of being programmed for self-assembly and disassembly, making it usable for building nano-mechanical devices.

Google Ventures‘ Bill Maris Investing in Idea of Living to 500

This article is a year old, but it is the first I’ve seen it. This guy has access to hundreds of millions of dollars per year and has this wonderful quote to go with it: “If you ask me today, is it possible to live to be 500? The answer is yes,” Bill Maris says.


Bill Maris has $425 million to invest this year, and the freedom to invest it however he wants. He’s looking for companies that will slow aging, reverse disease, and extend life.

Researchers think they’ve just found a new kind of stem cell

Though their use is marred by controversy and debate, stem cells are one of our best bets when it comes to developing regenerative treatments for a plethora of different conditions. Now, scientists believe they’ve found a brand new type of stem cell hidden in plain sight called XEN, also referred to as iXEN, and it could lead to new ways to study birth defects and reproductive problems.

Before we dive into the latest discovery, it’s worth mentioning how researchers have been using stem cells up to this point. Pluripotent stem cells are so important because they have the potential to develop into every cell in the body, effectively allowing researchers to heal any type of tissue. In the past, these cells were harvested from embryos, but researchers have now figured out how to unlock the potential of pluripotent stem cells using adult cells — avoiding the controversy.

These cells are known as induced pluripotent stem cells (iPS) and researchers create them by “reactivating embryonic genes to ‘reprogram’ mature adult cells”. By doing so, researchers can to an extent, control what these cells become, which means they have the power to regrow damaged tissues.

Scientists trying to clone extinct Ice Age cave lions using DNA from 12,000 year old remains

The project is a joint venture by Russian and South Korean scientists at the Joint Foundation of Molecular Paleontology at North East Russia University in the city of Yakutsk. They will use one of the cubs for the cloning process whilst the other will be kept in a museum.


Remains of two lion cubs were found in Russia’s north-eastern Sakha Republic in August 2015.

New Metal Can Become Soft and Stiff Just Like Human Muscles

This looks very promising.


The human body is designed pretty well: Our muscles are able to switch between strength and dexterity, limbs stiffening when we do an energy-fueled task like lifting a bowling ball and softening when we do something delicate like painting with a brush. This ability is very rarely replicated in engineering systems, namely because it’s expensive, but also because it’s been damn hard to clone.

However, HRL Laboratories — the same Malibu-based researchers who brought you microlattice — has announced they’ve been able to replicate the reactions of human muscle in metal. Their goal is to use this new technology to create cars with smoother rides and, more intriguingly, more human-like robots.

In a paper published in the most recent issue of Science Advances, the researchers claim that their technology, “variable stiffness vibration isolator” can change from stiff to soft by a factor of 100 in milliseconds, independent of how much mechanical force is applied. This technology, they argue, far surpasses any previous mechanisms trying to do the same thing.

/* */