Toggle light / dark theme

Alphabet’s Sidewalk Labs plans to spin out some of its smart city ideas into separate companies, CEO Daniel Doctoroff said today at Collision from Home conference. Doctoroff listed three potential companies: mass timber construction, affordable electrification sans fossil fuels, and planning tools optimized with machine learning and computation design.

Last month, Sidewalk Labs killed its Toronto smart city project, which envisioned raincoats designed for buildings, heated pavement, and object-classifying cameras. Privacy advocates celebrated that the Google sister company would not be getting invasive power to surveil residents. But as I argued in my column that week, the story was far from over. Sidewalk Labs was using the COVID-19 pandemic as a scapegoat for the Toronto project, but the company wouldn’t stay idle.

Now that the world is in the thick of the coronavirus pandemic, governments are quickly deploying their own cocktails of tracking methods. These include device-based contact tracing, wearables, thermal scanning, drones, and facial recognition technology. It’s important to understand how those tools and technologies work and how governments are using them to track not just the spread of the coronavirus, but the movements of their citizens.

Contact tracing is one of the fastest-growing means of viral tracking. Although the term entered the common lexicon with the novel coronavirus, it’s not a new practice. The Centers for Disease Control and Prevention (CDC) says contact tracing is “a core disease control measure employed by local and state health department personnel for decades.”

Traditionally, contact tracing involves a trained public health professional interviewing an ill patient about everyone they’ve been in contact with and then contacting those people to provide education and support, all without revealing the identity of the original patient. But in a global pandemic, that careful manual method cannot keep pace, so a more automated system is needed.

But as millions of animals continue to be used in biomedical research each year, and new legislation calls on federal agencies to reduce and justify their animal use, some have begun to argue that it’s time to replace the three Rs themselves. “It was an important advance in animal research ethics, but it’s no longer enough,” Tom Beauchamp told attendees last week at a lab animal conference.


Science talks with two experts in animal ethics who want to go beyond the three Rs.

Summary: Study identifies a different set of individual neurons in the medial frontal cortex that is responsible for memory-based decision making. The findings have implications for the treatment of Alzheimer’s disease, schizophrenia, and other disorders associated with problems in cognitive flexibility.

Source: CalTech

Most of us know that feeling of trying to retrieve a memory that does not come right away. You might be watching a romantic comedy featuring that famous character actor who always plays the best friend and find yourself unable to recall her name (it’s Judy Greer). While memory retrieval has been the subject of countless animal studies and other neuroimaging work in humans, exactly how the process works–and how we make decisions based on memories–has remained unclear.

DNA replication is a process of critical importance to the cell, and must be coordinated precisely to ensure that genomic information is duplicated once and only once during each cell cycle. Using super-resolution technology a University of Technology Sydney led team has directly visualized the process of DNA replication in single human cells.

This is the first quantitative characterization to date of the spatio-temporal organization, morphology, and in situ epigenetic signatures of individual replication foci (RFi) in single human at the nanoscale.

The results of the study, published in PNAS (Proceedings of the National Academy of Sciences) give new insight into a poorly understood area of DNA replication namely how replication origin sites are chosen from thousands of possible sites.

Dean Kamen, the inventor of the Segway, is currently spearheading a project to convert part of the old New Hampshire textile plant into a factory for lab-grown lungs, livers, and other organs for transplantation — and he doesn’t think it’ll take long to do it.


The nonprofit is like a club for tissue engineering and regenerative medicine researchers. Groups must have something to offer in order to join (money, equipment, experience), but once a part of ARMI, they gain access to the other members’ research and resources.

Scientists identify an important protein that increases “bacterial virulence,” when mutated, changing harmless bacteria to harmful ones.

As far as humans are concerned, bacteria can be classified as either harmful, pathogenic bacteria and harmless or beneficial non-pathogenic bacteria. To develop better treatments for diseases caused by pathogenic bacteria, we need to have a good grasp on the mechanisms that cause some bacteria to be virulent. Scientists have identified genes that cause virulence, or capability to cause disease, but they do not fully know how bacteria evolve to become pathogenic.

To find out, Professor Chikara Kaito and his team of scientists from Okayama University, Japan, used a process called experimental evolution to identify molecular mechanisms that cells develop to gain useful traits, and published their findings in PLoS Pathogens. “We’re excited by this research because no one has ever looked at virulence evolution of bacteria in an animal; studies before us looked at the evolution in cells,” said Prof Kaito.