Toggle light / dark theme

Stem Cell Scientists Explore the Latent Regenerative Potential of the Inner Ear

“Our study raises the possibility of using therapeutic drugs, gene editing, or other strategies to make epigenetic modifications that tap into the latent regenerative capacity of inner ear cells as a way to restore hearing,” said Segil. “Similar epigenetic modifications may also prove useful in other non-regenerating tissues, such as the retina, kidney, lung, and heart.”


Scientists from the USC Stem Cell laboratory of Neil Segil have identified a natural barrier to the regeneration of the inner ear’s sensory cells, which are lost in hearing and balance disorders. Overcoming this barrier may be a first step in returning inner ear cells to a newborn-like state that’s primed for regeneration, as described in a new study published in Developmental Cell.

“Permanent hearing loss affects more than 60 percent of the population that reaches retirement age,” said Segil, who is a Professor in the Department of Stem Cell Biology and Regenerative Medicine, and the USC Tina and Rick Caruso Department of Otolaryngology – Head and Neck Surgery. “Our study suggests new gene engineering approaches that could be used to channel some of the same regenerative capability present in embryonic inner ear cells.”

In the inner ear, the hearing organ, which is the cochlea, contains two major types of sensory cells: “hair cells” that have hair-like cellular projections that receive sound vibrations; and so-called “supporting cells” that play important structural and functional roles.

Dad builds robotic exoskeleton to help son walk — BBC News

Every dad should do this. 😃


French dad and robotics engineer Jean-Louis Constanza has built a robotic suit for his 16-year-old son Oscar that allows him to walk.

Oscar, a wheelchair user, activates the suit by saying “Robot, stand up” and it then walks for him.

Jean-Louis co-founded the company that builds the suit, which can allow users to move upright for a few hours a day.

It is used in several hospitals, but it isn’t yet available for everyday use by individuals and has a price tag of around €150000 (about £127700).

The insect apocalypse: ‘Our world will grind to a halt without them’

Few people seem to realise how devastating this is, not only for human wellbeing – we need insects to pollinate our crops, recycle dung, leaves and corpses, keep the soil healthy, control pests, and much more – but for larger animals, such as birds, fish and frogs, which rely on insects for food. Wildflowers rely on them for pollination. As insects become more scarce, our world will slowly grind to a halt, for it cannot function without them.


A strong argument can be made that humans ought to farm more insects as an alternative to pigs, cows or chickens. Farming insects is more energy efficient and requires less space and water. They are a healthier source of protein, being high in essential amino acids and lower in saturated fats than beef, and we are much less likely to catch a disease from eating insects (think bird flu or Covid-19). So if we wish to feed the 10–12 billion people who are projected to be living on our planet by 2050, then we should be taking the farming of insects seriously as a healthier source of protein and a more sustainable option to conventional livestock.

While western societies may not eat insects, we do regularly consume them at one step removed in the food chain. Freshwater fish such as trout and salmon feed heavily on insects, as do game birds like partridge, pheasant and turkey.

Aside from their role as food, insects perform a plethora of other vital services in ecosystems. For example, 87% of all plant species require animal pollination, most of it delivered by insects. The colourful petals, scent and nectar of flowers evolved to attract pollinators. Without pollination, wild flowers would not set seed, and most would eventually disappear. There would be no cornflowers or poppies, foxgloves or forget-me-nots. But an absence of pollinators would have a far more devastating ecological impact than just the loss of wild flowers. Approximately three-quarters of the crop types we grow also require pollination by insects, and if the bulk of plant species could no longer set seed and died out, then every community on land would be profoundly altered and impoverished, given that plants are the basis of every food chain.

Centenarians have unique gut bacteria that enables them to live longer

TOKYO — Centenarians have unique gut bacteria that enables them to live to a ripe old age, according to new research. Scientists in Japan say this unique gut makeup fuels bile acids that protect against disease.

The discovery could lead to yogurts and other probiotic foods that increase longevity.

“In people over the age of 100, an enrichment in a distinct set of gut microbes generate unique bile acids,” says lead author Professor Kenya Honda of Keio University in a statement per South West News Service. “They might inhibit the growth of pathogens.”

A Institute of Neurological Recovery

Institute of Neurological Recovery 1877 S. Federal Hwy. Suite 110 Boca Raton, FL 33432 Phone: +1 (561) 353‑9707.

The Institute of Neurological Recovery® (INR®). A decade of pioneering discoveries in medicine. The INR utilizes the pioneering, patented perispinal etanercept (PSE) off-label treatment methods invented by its founder and Medical Director, Edward Tobinick, M.D. The contents of this website, including text, images, and videos are ©2021 INR PLLC, all rights reserved.

DeepMind says it can predict the shape of every protein in the human body

The predicted shapes still need to be confirmed in the lab, Ellis told Technology Review. If the results hold up, they will rapidly push forward the study of the proteome, or the proteins in a given organism. DeepMind researchers published their open-source code and laid out the method in two peer-reviewed papers published in Nature last week.


And in 20 other animals often studied by science, too.

Deep learning on computational biology and bioinformatics tutorial: from DNA to protein folding and alphafold2

AlphaFold 2 paper and code is finally released. This post aims to inspire new generations of Machine Learning (ML) engineers to focus on foundational biological problems.

This post is a collection of core concepts to finally grasp AlphaFold2-like stuff. Our goal is to make this blog post as self-complete as possible in terms of biology. Thus in this article, you will learn about:

/* */