Menu

Blog

Archive for the ‘biotech/medical’ category: Page 1779

Mar 27, 2020

Shrimp vendor at Wuhan market may be coronavirus ‘patient zero’

Posted by in category: biotech/medical

A shrimp peddler at the Chinese market where the coronavirus pandemic likely began has been identified as one of the first victims of the disease — and possibly “patient zero.”

The 57-year-old woman, identified by the Wall Street Journal as Wei Guixian, was the first person from the now-notorious Huanan market in Wuhan to test positive for the deadly bug.

She was at work Dec. 10 when she developed what she thought were cold symptoms, Chinese outlet The Paper reported. So she walked to a small local clinic for treatment and then went back to work — likely spreading the contagion.

Mar 27, 2020

Researchers take a big step towards a comprehensive single-cell atlas

Posted by in categories: biotech/medical, genetics

A large team of researchers affiliated with multiple institutions in and around Hangzhou, China, has taken a very large step toward the creation of a comprehensive human single-cell atlas. In their paper published in the journal Nature, the group describes how they sequenced the RNA of over a half-million single cells donated by volunteers and processed the information to present it in a way that could be used in a single-cell atlas.

All of the cells in the human body carry the same basic genetic information—they differ in which genes are expressed. Those genes that are expressed define the function of a given cell. For some time, have wanted an atlas that would describe which genes are expressed in cells in all parts of the body. Such an atlas would help scientists better understand the functions of cells and how they work together, in addition to saving time on new research efforts. Atlases have been created for some , but currently, there is no single atlas to cover all of the in the human body. Creating such an atlas would require much time and effort over many years, as the has over 30 trillion cells, after all. In this new effort, the researchers have taken a large step toward that goal by providing gene expression information for over 500,000 cells from different parts of the body (and some from fetal tissue), including all of the major organs.

The work involved first obtaining the and then processing them. To that end, the cells were first isolated by putting some in a centrifuge and using enzymes with others. Once isolated, each of the cells were sequenced using a special tool the team previously developed called Microwell-seq—it allows for fast sequencing of large numbers of cells. In all, the team sequenced cells from 60 types of tissue. The researchers then generated a map using a method they devised for classifying cell information. The map and its underlying data form the basis of what could become a full, comprehensive single-cell database.

Mar 27, 2020

Neustristor: The Computer Chip-Shaped Neutron Source

Posted by in categories: biotech/medical, computing

Sandia National Laboratories distinguished technical staff member Juan Elizondo-Decanini developed a new configuration for neutron generators by turning from conventional cylindrical tubes to the flat geometry of computer chips. The Neutristor is an ultra-compact, disposable, neutron generator 1000 times smaller than the closest competitor. The most practical application, and the most likely to be near-term, would be a tiny medical neutron source implanted close to a tumor that would allow cancer patients to receive a low neutron dose over a long period at home instead of having to be treated at a hospital. Elizondo-Decanini says the technology is ready to be licensed for some commercial applications, but other more complex commercial applications could take five to ten years.

Mar 27, 2020

Blood Plasma From Survivors Will Be Given to Coronavirus Patients

Posted by in category: biotech/medical

In people who have recovered, plasma is teeming with antibodies that may fight the virus. But the treatment beginning in New York is experimental.

Mar 27, 2020

The Prince of England, next in line to the trone has coronavirus

Posted by in categories: biotech/medical, health

#JustSaying


The Prime Minister of England has coronavirus. The Health Minister of England has coronavirus.

Mar 27, 2020

Google Scholar

Posted by in categories: biotech/medical, quantum physics

Based on a lot of study it may be possible that if naturally derived dmt having quantum entanglement properties that someday it could be used to naturally teleport people. Especially if can essentially have suppositions properties that it may in fact allow an interdimensional portal quantum mechanically speaking it also said that cannabis did not start on earth either and is an alien plant. It may that someday we could take a pill to teleport through the fabric of space time with a biochemical means but it would involve a sort higgs mode or higgs boson level quantum teleportation for that amount of energy. But it may eventually lead to real teleportation in human beings naturally someday since it already holds those properties.

Mar 27, 2020

Making sense of cells

Posted by in categories: biotech/medical, computing, food, mathematics, neuroscience

Our body’s ability to detect disease, foreign material, and the location of food sources and toxins is all determined by a cocktail of chemicals that surround our cells, as well as our cells’ ability to ‘read’ these chemicals. Cells are highly sensitive. In fact, our immune system can be triggered by the presence of just one foreign molecule or ion. Yet researchers don’t know how cells achieve this level of sensitivity.

Now, scientists at the Biological Physics Theory Unit at Okinawa Institute of Science and Technology Graduate University (OIST) and collaborators at City University of New York have created a simple model that is providing some answers. They have used this model to determine which techniques a cell might employ to increase its sensitivity in different circumstances, shedding light on how the biochemical networks in our bodies operate.

“This model takes a complex biological system and abstracts it into a simple, understandable mathematical framework,” said Dr. Vudtiwat Ngampruetikorn, former postdoctoral researcher at OIST and the first author of the research paper, which was published in Nature Communications. “We can use it to tease apart how cells might choose to spend their energy budget, depending on the world around them and other cells they might be talking to.”

Continue reading “Making sense of cells” »

Mar 27, 2020

How robots and A.I. could help save our healthcare workers and the elderly

Posted by in categories: biotech/medical, robotics/AI

Though advancements still need to be made, robots and A.I. could help us fight the coronavirus outbreak and save lives.

Mar 27, 2020

Applying genome-wide CRISPR-Cas9 screens for therapeutic discovery in facioscapulohumeral muscular dystrophy

Posted by in categories: biotech/medical, genetics

:33333 could lead to future cures of muscular dystrophy.


Facioscapulohumeral muscular dystrophy (FSHD) is caused by altered expression of DUX4, a gene important during development that is not usually present in adult cells. In FSHD skeletal muscle, activation of DUX4 leads to apoptosis. To identify potential targets that mediate DUX4-induced cell death, Lek et al. performed an unbiased screen using CRISPR-Cas9. Hypoxia signaling emerged as a target, and treating patient cells and zebrafish models of FSHD with inhibitors of hypoxia signaling reduced cell death and expression of DUX4 target genes and improved structural defects and muscle function. Results demonstrate the utility of this CRISPR-Cas9 screen for identifying putative therapeutic targets for FSHD.

The emergence of CRISPR-Cas9 gene-editing technologies and genome-wide CRISPR-Cas9 libraries enables efficient unbiased genetic screening that can accelerate the process of therapeutic discovery for genetic disorders. Here, we demonstrate the utility of a genome-wide CRISPR-Cas9 loss-of-function library to identify therapeutic targets for facioscapulohumeral muscular dystrophy (FSHD), a genetically complex type of muscular dystrophy for which there is currently no treatment. In FSHD, both genetic and epigenetic changes lead to misexpression of DUX4, the FSHD causal gene that encodes the highly cytotoxic DUX4 protein. We performed a genome-wide CRISPR-Cas9 screen to identify genes whose loss-of-function conferred survival when DUX4 was expressed in muscle cells. Genes emerging from our screen illuminated a pathogenic link to the cellular hypoxia response, which was revealed to be the main driver of DUX4-induced cell death.

Mar 27, 2020

Is big tech good for your health? | The Economist

Posted by in categories: biotech/medical, health

Tech giants including Google and Microsoft want to work with hospitals and health-care systems to improve lives. But should people trust them with their medical data?

For more from Economist Films visit: http://films.economist.com/