Toggle light / dark theme

Quantifying Biological Age: Blood Test #2 in 2021

Paper references for Levine’s Phenotypic Age calculator and aging.ai:

An epigenetic biomarker of aging for lifespan and healthspan:
https://pubmed.ncbi.nlm.nih.gov/29676998/

Population Specific Biomarkers of Human Aging: A Big Data Study Using South Korean, Canadian, and Eastern European Patient Populations:
https://pubmed.ncbi.nlm.nih.gov/29340580/

Targeting tumors with nanoworms

Getting closer.


Drugs and vaccines circulate through the vascular system reacting according to their chemical and structural nature. In some cases, they are intended to diffuse. In other cases, like cancer treatments, the intended target is highly localized. The effectiveness of a medicine —and how much is needed and the side effects it causes —are a function of how well it can reach its target.

“A lot of medicines involve intravenous injections of drug carriers,” said Ying Li, an assistant professor of mechanical engineering at the University of Connecticut. “We want them to be able to circulate and find the right place at the right time and to release the right amount of drugs to safely protect us. If you make mistakes, there can be terrible side effects.”

Li studies nanomedicines and how they can be designed to work more efficiently. Nanomedicine involves the use of nanoscale materials, such as biocompatible nanoparticles and nanorobots, for diagnosis, delivery, sensing or actuation purposes in a living organism. His work harnesses the power of supercomputers to simulate the dynamics of nanodrugs in the , design new forms of nanoparticles, and find ways to control them.

Harvard scientists create gene-editing tool that could rival CRISPR

Harvard’s Wyss Institute has created a new gene-editing tool that enable scientist to perform millions of genetic experiments simultaneously.


Researchers from the Harvard’s Wyss Institute for Biologically Inspired Engineering have created a new gene-editing tool that can enable scientists to perform millions of genetic experiments simultaneously. They’re calling it the Retron Library Recombineering (RLR) technique, and it uses segments of bacterial DNA called retrons that can produce fragments of single-stranded DNA.

When it comes to gene editing, CRISPR-Cas9 is probably the most well-known technique these days. It’s been making waves in the science world in the past few years, giving researchers the tool they need to be able to easily alter DNA sequences. It’s more accurate than previously used techniques, and it has a wide variety of potential applications, including life-saving treatments for various illnesses.

However, the tool has some major limitations. It could be difficult to deliver CRISPR-Cas9 materials in large numbers, which remains a problem for studies and experiments, for one. Also, the way the technique works can be toxic to cells, because the Cas9 enzyme — the molecular “scissors” in charge of cutting strands of DNA — often cuts non-target sites as well.

India is churning out billion-dollar startups. Now they need to start making money

The mood a year later is very different, despite a brutal surge in coronavirus cases that is threatening the economic recovery. India’s startup community has found itself in an unprecedented funding bonanza.


In the first four months of 2021, 11 startups have attained unicorn status, meaning they’ve reached a valuation of at least $1 billion.

AI Challenges For The Health IT Industry: Should We Expect Electronic Doctors?

Yes, but they wont be trusted til 2035.


Current trends in AI use in healthcare lead me to posit that this market will significantly grow in the coming years. So, should leaders in healthcare expect the emergence of a fully automated electronic physician, sonographer or surgeon as a replacement for the human healthcare professional? Can the development of AI in healthcare help overcome the difficulties the industry faces today? To figure all this out, I would like to analyze the current challenges of using AI in healthcare.

Let’s discuss two promising examples: the application of AI in diagnosis and reading images, and the use of robotic systems in surgery.

Diagnostic Robots: Accuracy And Use For Treatment Recommendations

The success of AI in diagnosing is confirmed by the results of its application in a number of medical studies — for example, in optical coherence tomography (OCT), which requires serious qualifications. Google’s AI-based DeepMind Health system, for instance, demonstrates 94% accuracy of diagnoses for over 50 types of eye diseases in an early trial. Nevertheless, the system operates in conjunction with human experts.

Surprise in the Deep Sea: Researchers Discover Unexpected Paths on the Ocean Floor

Sponges: They are considered to be one of the most primitive forms of animal life, because they have neither locomotion organs nor a nervous system. A team around deep-sea scientist Antje Boetius has now discovered that sponges leave trails on the sea floor in the Arctic deep sea. They conclude that the animals might move actively — even if only a few centimeters per year. They are now publishing these unique findings in the journal Current Biology.

The surprise was great when researchers looked at high-resolution images of the sea floor of the Arctic deep sea in detail: Path-like tracks across the sediments ended where sponges were located. These trails were observed to run in all directions, including uphill. “We conclude from this that the sponges might actively move across the sea floor and leave these traces as a result of their movement,” reports Dr Teresa Morganti, sponge expert from the Max Planck Institute for Marine Microbiology in Bremen. This is particularly exciting because science had previously assumed that most sponges are attached to the seafloor or are passively moved by ocean currents and, usually down slopes.

‘Pokemonas’: Bacteria related to lung parasites discovered, named after Pokémon

Gotta catch them all because this one may cause legionnaires diesease.

“Institute of Zoology have named one of the newly discovered bacteria ‘Pokemonas’ because they live in spherical amoebae, comparable to Pokémon in the video game, which are caught in balls.”


A research team at the University of Cologne has discovered previously undescribed bacteria in amoebae that are related to Legionella and may even cause disease. The researchers from Professor Dr. Michael Bonkowski’s working group at the Institute of Zoology have named one of the newly discovered bacteria ‘Pokemonas’ because they live in spherical amoebae, comparable to Pokémon in the video game, which are caught in balls. The results of their research have been published in the journal Frontiers in Cellular and Infection Microbiology.

Bacteria of the order Legionellales have long been of scientific interest because some of these bacteria are known to cause lung disease in humans and animals—such as “Legionnaires’ disease,” which is caused by the species Legionella pneumophila and can sometimes be fatal. Legionellales bacteria live and multiply as intracellular parasites in the cells of organisms as hosts. In particular, the hosts of Legionellales are . The term ‘amoeba’ is used to describe a variety of microorganisms that are not closely related, but share a variable shape and crawling locomotion by means of pseudopods. “We wanted to screen amoebae for Legionellales and chose a group of amoebae for our research that had no close relationship to the hosts that were previously studied. The choice fell on the amoeba group Thecofilosea, which is often overlooked by researchers,” explains Marcel Dominik Solbach.

And indeed, the spherical Thecofilosea serve as host organisms for Legionellales. In Thecofilosea amoebae from environmental samples, the scientists were able to detect various Legionellales species, including two previously undescribed genera and one from the genus Legionella. “The results show that the range of known host organisms of these bacteria is considerably wider than previously thought. In addition, these findings suggest that many more amoebae may serve as hosts for Legionellales—and thus potentially as vectors of disease. To investigate this further, we are now sequencing the complete genome of these bacteria,” said Dr. Kenneth Dumack, who led the project.