Toggle light / dark theme

This is an essay written at the end of the first year of an oncology fellowship that was filled with ward months seeing leukemia, lymphoma, solid malignancies, and multiple hematologic abnormalities. In the future, I may look back at this essay and see myself as naïve, truly optimistic, and not yet weathered and jaded from years of success and failure. What I have learned can be summarized here, as many of us do while looking at consults or book s, by skipping to the end. Remember: don’t quit! There are good days and bad days for us, but no matter how high the high or low the low, the patient is the one with the disease. Screen and enroll patients in clinical trials, as research brought us the treatment choices we have today. Dr Michael Craig, one of my mentors in fellowship, left a note near the fellows’ microscope. I have stared at acute leukemia through those eyepieces, and made therapeutic decisions and diagnoses that changed people’s lives. The note encompasses what we do, what we represent as oncologists. It reads: “Cancer sucks. What can you do? Call me with questions.”

Richard Pazdur, MD

The US Food and Drug Administration today approved Cometriq (cabozantinib) to treat medullary thyroid cancer that has spread to other parts of the body (metastasized).

Basically it behaves like a bioweapon as it has a spread that has encompassed the earth.


US intelligence officials are probing the possibility that America’s enemies might use the coronavirus as a bioweapon, according to an alarming report.

The Department of Defense is monitoring for the potential of the virus to be weaponized, possibly against prominent, high-level targets, three people close to the matter told Politico.

A Pentagon spokesman, Lt. Col. Mike Andrews, declined to comment on whether Department of Defense officials were analyzing COVID-19 weaponization, but said its Chemical and Biological Defense program continues to support federal coronavirus countermeasures such as testing, vaccines and screening machines.

Nov 2019 NATIONAL HARBOR, MARYLAND

—In a handful of cities around the world, mosquitoes have been armed with a microscopic weapon against disease. The bacterium Wolbachia pipientis blocks the insects’ ability to spread fearsome viruses such as dengue, Zika, and chikungunya. Since 2011, researchers have been injecting Wolbachia into the eggs of Aedes aegypti mosquitoes and releasing the hatched insects, which spread this protection to their offspring. But the field has been waiting for evidence that this approach actually reduces disease in people.

Field trials suggest public health benefit to spreading Wolbachia.

We’re all impatient for solid recommendations based on rigorous testing and established facts, but in a fast-moving field, that’s rarely possible. And someone always has to be the guinea pig. This was just as true 130 years ago when Niels Ryberg Finsen began experimenting with treating disease with UV light. He started by testing on himself.


Niels Ryberg Finsen pioneered therapeutic ultraviolet lamps and won himself a Nobel Prize.

Minimally invasive laparoscopic surgery, in which a surgeon uses tools and a tiny camera inserted into small incisions to perform operations, has made surgical procedures safer for both patients and doctors over the last half-century. Recently, surgical robots have started to appear in operating rooms to further assist surgeons by allowing them to manipulate multiple tools at once with greater precision, flexibility, and control than is possible with traditional techniques. However, these robotic systems are extremely large, often taking up an entire room, and their tools can be much larger than the delicate tissues and structures on which they operate.

A collaboration between Wyss Associate Faculty member Robert Wood, Ph.D. and Robotics Engineer Hiroyuki Suzuki of Sony Corporation has brought surgical robotics down to the microscale by creating a new, origami-inspired miniature remote center of motion manipulator (the “mini-RCM”). The robot is the size of a tennis ball, weighs about as much as a penny, and successfully performed a difficult mock surgical task, as described in a recent issue of Nature Machine Intelligence.

“The Wood lab’s unique technical capabilities for making have led to a number of impressive inventions over the last few years, and I was convinced that it also had the potential to make a breakthrough in the field of medical manipulators as well,” said Suzuki, who began working with Wood on the mini-RCM in 2018 as part of a Harvard-Sony collaboration. “This project has been a great success.”

The plastic tips attached to the ends of shoelaces keep them from fraying. Telomeres are repetitive DNA (deoxyribonucleic acid) sequences that serve a similar function at the end of chromosomes, protecting its accompanying genetic material against genome instability, preventing cancers and regulating the aging process.

Each time a in our body, the telomeres shorten, thus functioning like a molecular “clock” of the cell as the shortening increases progressively with aging. An accurate measure of the quantity and length of these telomeres, or “clocks,” can provide vital information if a cell is aging normally, or abnormally, as in the case of cancer.

To come up with an innovative way to diagnose telomere abnormalities, a research team led by Assistant Professor Cheow Lih Feng from the NUS Institute for Health Innovation & Technology (iHealthtech) has developed a novel method to measure the absolute telomere length of individual telomeres in less than three hours. This unique telomere profiling method can process up to 48 samples from low amounts (1 ng) of DNA.