Toggle light / dark theme

Over the next few months, medical delivery drones will take flight in the Netherlands between two hospitals to deliver emergency medicines, blood, and other time-sensitive samples. The drones will be flying between the Isala Diaconessenhuis Meppel hospital and the Isala Ziekenhuis hospital.

The drones are at the center of tests, looking at how they can deliver emergency medicine in the future and improve patient care. This also marks the first time drones have flown beyond visual line of sight (BVLOS) in overpopulated areas.

The tests are being run by the Medical Drone Service, an initiative set up by ANWB, PostNL, Erasmus MC, Isala, Sanquin, Certe, and technology partners Avy and KPN.

A team of researchers from Delft University of Technology (TU Delft), Leiden University, Tohoku University and the Max Planck Institute for the Structure and Dynamics of Matter has developed a new type of MRI scanner that can image waves in ultrathin magnets. Unlike electrical currents, these so-called spin waves produce little heat, making them promising signal carriers for future green ICT applications.

MRI scanners can look into the human body in a non-invasive manner. The scanner detects the magnetic fields radiated by the atoms inside, which makes it possible to study the health of organs even though they are hidden underneath thick layers of tissue.

The non-invasive, see-through power of MRI is desirable for many research fields and industries. It could be particularly useful as an imaging tool in nanotechnology and the chip industry. Being able to detect signals in computer chips and other nanodevices would facilitate optimizing their performance and reducing their heat production. However, the millimeter resolution of conventional MRI is insufficient to study chip-scale devices. A team of researchers led by TU Delft have now developed a new method for sensing at the sub-micrometer scale.

The 22nd edition of the China Hi-Tech Fair, with more than 3,300 online and offline exhibitors from the mainland and overseas, has put renewed emphasis on the ways innovative technology could help people better adapt to changes caused by the Covid-19 outbreak.


China Hi-Tech Fair, the country’s biggest technology show, features a range of artificial intelligence, smart city and robotic applications.

It has been really fun talking to the kids about AI. Should we help AI consciousness to emerge — or should we try to prevent it? Can you design a kindest AI? Can we use AI as an universal emotion translator? How to search for an AI civilization? And many many other questions that you can discuss with kids.


Ultimately, early introduction of AI is not limited to formal instruction. Just contemplating future scenarios of AI evolution provides plentiful material for engaging students with the subject. A survey on the future of AI, administered by the Future of Life Institute, is a great starting point for such discussions. Social studies classes, as well as school debate and philosophy clubs, could also launch a dialogue on AI ethics – an AI nurse selecting a medicine, an AI judge deciding on a criminal case, or an AI driverless car switching lanes to avoid collision.

Demystifying AI for our children in all its complexity while providing them with an early insight into its promises and perils will make them confident in their ability to understand and control this incredible technology, as it is bound to develop rapidly within their lifetimes.

Follow me on Twitter. Check out my website.

“In our current study we were able to uncover important limitations for the use of metformin as longevity medicine,” says Dr. Ermolaeva. In contrast to the positive longevity effects in young organisms that received metformin, lifespan is shortened through metformin intake at an older age. “Previous studies that provided evidence of an extended longevity by metformin usually examined animals treated with metformin from young adult or middle age until the end of life. In contrast, we have looked at treatment windows covering the entire life span, or restricted to early life or to late life”. The study also utilized a human cell culture model of replicative aging to assess human responses to metformin at a cellular level and compare them to organismal responses of the worms.

**Metformin longevity benefits are reversed with age**

The research team led by Dr. Ermolaeva found that the very same metformin treatment that prolonged life when C. elegans worms were treated at young age, was highly toxic when animals of old age were treated. Up to 80% of the population treated at old age were killed by metformin within the first 24 hours of treatment. Consistently, human primary cells demonstrated a progressive decrease in metformin tolerance as they approached replicative senescence. The researchers were able to link this detrimental phenotype to the reduced ability of old cells and old nematodes to adapt to metabolic stressors like metformin. Under these circumstances, the exact same dose of the drug that increased longevity of young-treated organisms by triggering adaptive stress responses was harmful in animals treated at old age, which were unable to activate such protective signals.


Metformin is a common type 2 diabetes drug. Recently, it was found to extend life span of young non-diabetic animals but the responses of older organisms to metformin remain unexplored. Researchers at the Leibniz Institute on Aging—Fritz Lipmann Institute (FLI) in Jena, Germany, and the Friedrich Schiller University Jena found that mitochondrial dysfunction abrogates metformin benefits in aged C. elegans and late passage human cells. Moreover, the same metformin regime that prolongs the lifespan of young nematodes was toxic in old animals by inducing deleterious metabolic changes. These findings suggest that aging sets a limit for the health span benefits of metformin outside of diabetes.

It will allow for near-instantaneous virtual interactions, allowing people to send a hug to a loved one or shake hands with a colleague online. Its increased capacity and speed will revolutionise virtual reality and allow for wholesale ‘teleportation of senses’, researchers claim.

Potential applications include doctors monitoring patients remotely, embracing and holding hands with a loved one who may be thousands of miles away, and having virtual meetings with no lag…


Scientists say 6G technology will be about adding a fourth dimension, ‘teleporting´ our senses to more advanced virtual worlds.

Forget glue, screws, heat or other traditional bonding methods. A Cornell University-led collaboration has developed a 3D printing technique that creates cellular metallic materials by smashing together powder particles at supersonic speed.

This form of technology, known as “cold spray,” results in mechanically robust, that are 40% stronger than similar materials made with conventional manufacturing processes. The structures’ small size and porosity make them particularly well-suited for building biomedical components, like replacement joints.

The team’s paper, “Solid-State Additive Manufacturing of Porous Ti-6Al-4V by Supersonic Impact,” published Nov. 9 in Applied Materials Today.