Toggle light / dark theme

Whereas cellular senescence is known to promote aging, many of the mechanisms controlling this process remain poorly understood. Using human mesenchymal precursor cells (hMPCs) carrying pathogenic mutations of the premature aging diseases Werner syndrome and Hutchinson-Gilford progeria syndrome, the authors conducted a genome-wide CRISPR-Cas9–based screen to identify genes that could affect cellular senescence. They identified KAT7, a histone acetyltransferase gene, as a driver of senescence. Inactivation of Kat7 in mice aging normally and in prematurely aging progeroid mice extended their life span. Although KAT7 requires further study in other cell types, these experiments highlight the utility of genome-wide CRISPR-Cas9 screens and shed further light on mechanisms controlling senescence.

Understanding the genetic and epigenetic bases of cellular senescence is instrumental in developing interventions to slow aging. We performed genome-wide CRISPR-Cas9–based screens using two types of human mesenchymal precursor cells (hMPCs) exhibiting accelerated senescence. The hMPCs were derived from human embryonic stem cells carrying the pathogenic mutations that cause the accelerated aging diseases Werner syndrome and Hutchinson-Gilford progeria syndrome. Genes whose deficiency alleviated cellular senescence were identified, including KAT7, a histone acetyltransferase, which ranked as a top hit in both progeroid hMPC models. Inactivation of KAT7 decreased histone H3 lysine 14 acetylation, repressed p15INK4b transcription, and alleviated hMPC senescence.

But by the start of December, the developers of several vaccines had announced excellent results in large trials, with more showing promise. And on 2 December, a vaccine made by drug giant Pfizer with German biotech firm BioNTech, became the first fully-tested immunization to be approved for emergency use.

That speed of advance “challenges our whole paradigm of what is possible in vaccine development”, says Natalie Dean, a biostatistician at the University of Florida in Gainesville. It’s tempting to hope that other vaccines might now be made on a comparable timescale. These are sorely needed: diseases such as malaria, tuberculosis and pneumonia together kill millions of people a year, and researchers anticipate further lethal pandemics, too.

The COVID-19 experience will almost certainly change the future of vaccine science, says Dan Barouch, director of the Center for Virology and Vaccine Research at Harvard Medical School in Boston, Massachusetts. “It shows how fast vaccine development can proceed when there is a true global emergency and sufficient resources,” he says. New ways of making vaccines, such as by using messenger RNA (mRNA), have been validated by the COVID-19 response, he adds. “It has shown that the development process can be accelerated substantially without compromising on safety.”

NHS clinicians in England will be among the first to offer a cutting-edge personalised cancer treatment to some people with lymphoma, after the CAR T cell therapy was approved for NHS use.

Tecartus – a immune-boosting treatment that engineers a patient’s own immune cells to kill their cancer – has been recommended by the National Institute for Health and Care Excellence (NICE) for people with a rare type of non-Hodgkin lymphoma.

NICE estimates that around 100 people a year with mantle cell lymphoma could be treated with this therapy. Kruti Shrotri, head of policy development at Cancer Research UK, said the news will be welcomed by people with mantle cell lymphoma.

A brain aging link ~~~.


Suppose Smokey the Bear were to go on a tear and start setting forest fires instead of putting them out. That roughly describes the behavior of certain cells of our immune system that become increasingly irascible as we grow older. Instead of stamping out embers, they stoke the flames of chronic inflammation.

Biologists have long theorized that reducing this inflammation could slow the and delay the onset of age-associated conditions, such as , Alzheimer’s disease, cancer and frailty, and perhaps even forestall the gradual loss of mental acuity that happens to nearly everyone.

Yet the question of what, exactly, causes particular of the immune system to kick into inflammatory overdrive has lacked a definitive answer.

Numerous natural products are awaiting discovery in all kinds of natural habitats. Especially microorganisms such as bacteria or fungi are able to produce diverse natural products with high biomedical application potential in particular as antibiotics and anticancer agents. This includes the so-called red yeast of the species Rhodotorula mucilaginosa, isolated from a deep-sea sediment sample from the Mid-Atlantic Ridge and analyzed for its genome and chemical constituents by researchers from GEOMAR Centre for Marine Biotechnology (GEOMAR-Biotech) of GEOMAR Helmholtz Centre for Ocean Research Kiel and Kiel University (CAU). In a joint effort, the scientists succeeded in demonstrating its anticancer and antibacterial effects. This study, partly-funded by Kiel Marine Science (KMS) of Kiel University, was recently published in the renowned scientific journal Marine Drugs.

A unique opportunity arose for researchers in the Department of Botanical Genetics and Molecular Biology at Kiel University, headed by Professor Frank Kempken. Via the Institute of Geosciences at Kiel University, his group had access to sediment samples from the Mid-Atlantic Ridge in 1600—4000 m depth collected during a research cruise with the German research vessel MARIA S. MERIAN. From one of these sediment cores taken at a depth of 3600 m, Prof. Kempken´s group succeeded in isolating and cultivating living fungi of the species Rhodotorula mucilaginosa. This slowly growing type of yeast, which belongs to the so-called Basidiomycete yeasts should not be confused with the well-known baker’s yeast. The species originally grows at great depth tolerating high hydrostatic pressure and rather cold temperatures.

“With the applied methodology we have succeeded in cultivating yeast colonies that can withstand and grow at room temperatures and under atmospheric pressure. These experiments have shown once more that microorganisms with specific physiological properties thrive in distinct ecological niches. The experiments have shown us further that special ecological niches can produce microorganisms with special characteristics. The assumption about the adaptability of this special genus has therefore encouraged us to further analyze this species,” says Kempken, whose research group has been analyzing genomes of marine fungi for more than ten years.

Almost a year ago, we were told by our governments and healthcare professionals that a two-week shutdown of the economy would “flatten the curve.”


The Chinese Coronavirus (COVID-19) hit American shores — officially, anyway, there is significant evidence that it arrived earlier — in late January 2020. The American public was then told that a two-week shutdown of the economy would “flatten the curve,” relieving the pressure on hospital intensive care units and saving lives in the long run.

The average American, including conservatives, being people of good faith, complied, thinking that this was a common-sense measure that would save lives in the wake of a new and mysterious pandemic.

But two things quickly happened: First, the goalposts moved. No longer was it enough to “flatten the curve.” Now we were to be locked down until there was a cure.

Researchers at Osaka City University use quantum superposition states and Bayesian inference to create a quantum algorithm, easily executable on quantum computers, that accurately and directly calculates energy differences between the electronic ground and excited spin states of molecular systems in polynomial time.

Understanding how the natural world works enables us to mimic it for the benefit of humankind. Think of how much we rely on batteries. At the core is understanding molecular structures and the behavior of electrons within them. Calculating the energy differences between a molecule’s electronic ground and excited spin states helps us understand how to better use that molecule in a variety of chemical, biomedical and industrial applications. We have made much progress in molecules with closed-shell systems, in which electrons are paired up and stable. Open-shell systems, on the other hand, are less stable and their underlying electronic behavior is complex, and thus more difficult to understand. They have unpaired electrons in their ground state, which cause their energy to vary due to the intrinsic nature of electron spins, and makes measurements difficult, especially as the molecules increase in size and complexity.

Synthetic cannabidiol, better known as CBD, has been shown for the first time to kill the bacteria responsible for gonorrhea, meningitis and legionnaires disease.

The between The University of Queensland and Botanix Pharmaceuticals Limited could lead to the first new class of for in 60 years.

The UQ Institute for Molecular Bioscience’s Associate Professor Mark Blaskovich said CBD—the main nonpsychoactive component of cannabis—can penetrate and kill a wide range of bacteria including Neisseria gonorrhoeae, which causes gonorrhea.

McMaster researchers have developed a new form of cultivated meat using a method that promises more natural flavor and texture than other alternatives to traditional meat from animals.

Researchers Ravi Selvaganapathy and Alireza Shahin-Shamsabadi, both of the university’s School of Biomedical Engineering, have devised a way to make by stacking of cultivated muscle and grown together in a lab setting. The technique is adapted from a method used to grow tissue for human transplants.

The sheets of living cells, each about the thickness of a sheet of printer paper, are first grown in culture and then concentrated on growth plates before being peeled off and stacked or folded together. The sheets naturally bond to one another before the cells die.