At the University of Chicago, scientists have developed an absolutely innovative, promising treatment for COVID-19 in the form of nanoparticles with the ability to trap SARS-CoV-2 viruses inside the body and use the body’s own immune system to kill them.
The “nanotraps” lure the virus by imitating the target cells infected by the virus. When the virus gets trapped by the nanotraps, it is then sequestered from other cells and targeted for destruction by the immune system.
Theoretically, these nanotraps could be used on different variants of the virus, resulting in a promising new way to suppress the virus in the future. The therapy is still in the early stages of testing, but the researchers believe that it could be administered through a nasal spray as a treatment for COVID-19.
The known total of global coronavirus infections surpassed 200 million on Wednesday, according to the Center for Systems Science and Engineering at Johns Hopkins University, a daunting figure that also fails to capture howdeeply the virus has embedded itself within humanity.
The official tally stands at more than 614000 deaths in the United States. More than 550000 in Brazil. More than 425000 in India. Mexico has recorded more than 240000 fatalities, and Peru nearly 200000. Britain, Colombia, France, Italy, and Russia have all recorded well north of 100000 deaths. The global toll as of Wednesday was 4.2 million, itself a rough estimate given the discrepancies in the way nations record Covid-19 deaths.
As the coronavirus continues to find new hosts across the planet, the emergence of the Delta variant — thought to be twice as infectious as the initial form of the virus — is adding fuel to a fire that has never stopped raging. Fully vaccinated people are protected against the worst outcomes of Covid-19 caused by the Delta variant.
Summary: An experimental small molecule helped restore the removal of mitochondria from dopamine-producing neurons in the brain. The findings may help in the development of new therapies for Parkinson’s disease.
Source: Life.
Treating mice that have a Parkinson’s disease-causing mutation with a small molecule compound restores the removal of damaged mitochondria from their brain cells, shows a study published today in eLife.
Summary: A new hydrogel that acts as a gateway to transfer stem cells into the brain and facilitate repair to damaged tissue may effectively treat neurological conditions like Parkinson’s disease and stroke.
Source: Australian National University
Researchers from The Australian National University (ANU), in collaboration with The Florey Institute of Neuroscience and Mental Health, have developed a new type of hydrogel that could radically transform how we treat Parkinson’s disease.
The gel also offers hope for patients who have suffered from other neurological conditions such as strokes.
Summary: Blood tests revealed specific epigenetic biomarkers for schizophrenia. Researchers applied machine learning to analyze the CoRSIVs region of the human genome to identify the schizophrenia biomarkers. Testing the model with an independent data set revealed the AI technology can detect schizophrenia with 80% accuracy.
Source: Baylor College of Medicine.
An innovative strategy that analyzes a region of the genome offers the possibility of early diagnosis of schizophrenia, reports a team led by researchers at Baylor College of Medicine. The strategy applied a machine learning algorithm called SPLS-DA to analyze specific regions of the human genome called CoRSIVs, hoping to reveal epigenetic markers for the condition.
Polymer semiconductors—materials that have been made soft and stretchy but still able to conduct electricity—hold promise for future electronics that can be integrated within the body, including disease detectors and health monitors.
Yet until now, scientists and engineers have been unable to give these polymers certain advanced features, like the ability to sense biochemicals, without disrupting their functionality altogether.
Researchers at the Pritzker School of Molecular Engineering (PME) have developed a new strategy to overcome that limitation. Called “click-to-polymer” or CLIP, this approach uses a chemical reaction to attach new functional units onto polymer semiconductors.
Chinese upstart companies and IT goliaths hope to turn country’s artificial intelligence prowess into world-leading drug innovation. Do they have an edge over Western players?
It looks like the superbug still has a lot other “surprises” for us. There was the black fungus, now we have bone death(osteonecrosis). And this can reveal itself 1 to 2 months after recovery. A painful goodbye present, perhaps?
After Mucormycosis, a new disease that causes the death of bone tissues is posing new threats for Covid-19 survivors. Three confirmed cases of ‘Bone Death’ have already been reported in Mumbai’s Hinduja Hospital. The 3 patients, under the age of 40, developed the disease 2 months after they were treated for Covid-19.
What is bone death? What are the symptoms of ‘bone death’? How is COVID-19 triggering ‘death of bone tissues’? Doctor explains.
Crux is your daily dose of the big, viral and relevant news in a few minutes. It’s your ultimate guide to staying informed on the latest in politics, international relations, sports, entertainment and social media.
Bio-Digital Twins, Quantum Computing, And Precision Medicine — Mr. Kazuhiro Gomi, President and CEO, and Dr. Joe Alexander, MD, Ph.D., Director, Medical and Health Informatics (MEI) Lab, NTT Research.
Mr. Kazuhiro Gomi, is President and CEO of NTT Research (https://ntt-research.com/), a division of The Nippon Telegraph and Telephone Corporation, commonly known as NTT (https://www.global.ntt/), a Japanese telecommunications company headquartered in Tokyo, Japan. Mr. Gomi has been at NTT for more than 30 years and was involved in product management/product development activities at the beginning of his tenure. In September of 2009, Mr. Gomi was first named to the Global Telecoms Business Power100 — a list of the 100 most powerful and influential people in the telecoms industry. He was the CEO of NTT America Inc. from 2010 to 2019 and also served on the Board of Directors at NTT Communications from 2012 to 2019. Mr. Gomi received a Masters of Science in Industrial Engineering from the University of Illinois at Urbana-Champaign, and a Master of Science in Electrical Engineering from Keio University, Tokyo. Mr. Gomi is a member of the board at US Japan Council, a non-profit organization aimed at fostering a better relationship between the US and Japan.
Dr. Joe Alexander, is Director of the Medical and Health Informatics (MEI) Lab at NTT Research, where he oversees the MEI Lab research in multi-scale Precision Cardiology platforms such as the cardiovascular bio-digital twin, as well as heart-on-a-chip technology, specifically aimed at developing the infrastructure for a digital replica of an individual’s heart. In addition, the MEI Lab is working on nano-and micro-scale sensors and electrodes, other organ-on-a-chip micro-fluidics technologies, as well as wearable and remote sensing to support future bio-digital twin applications.
Before coming to NTT Research, Dr. Alexander spent 18 years at Pfizer, Inc., where he had most recently served as Senior Medical Director, Global Medical Affairs, working in cardiovascular medicine, worldwide clinical imaging and measurement technologies, medical devices and pulmonary hypertension, and regularly conducting modeling and simulation research in many of these areas. He previously worked for two years at Merck, Inc. and spent eight years at Vanderbilt University, where he completed a two-year residency in internal medicine and served as a professor of medicine and biomedical engineering. Dr. Alexander obtained his M.D. and Ph.D. (in biomedical engineering) degrees at the Johns Hopkins University School of Medicine.