Toggle light / dark theme

The next wave of regenerative medicine

Regenerative medicine company Frequency Therapeutics is developing new drugs that activate our innate abilities to restore function and reverse degenerative diseases. The company is working on small molecules that selectively activate progenitor cells already present within our bodies to create healthy, functional tissues. Frequency’s initial focus is on hearing loss and multiple sclerosis, and the company has just completed enrolment of a Phase 2b trial in adults with acquired sensorineural hearing loss (SNHL).

Longevity. Technology: Frequency is focused on progenitor cells, which are like stem cells but can only make cells that belong to the same tissue or organ. While progenitor cells remain active in some of our organs and tissues, they can become dormant in others. Frequency’s small molecules are designed to selectively target and induce dormant progenitor cells to create specific cell types to restore tissue structure and function. We caught up with Frequency’s Chief Scientific Officer Dr Chris Loose to learn more.

Nasdaq-listed Frequency was founded in 2014, licensing technology developed by professors Robert Langer from MIT and Jeffrey Karp from Harvard Medical School.

Tobias Reichmuth — the longevity market starts now

Dr talks taking hardcore science to market without biotech approval risk and the catalyst that is translational research.

We were lucky enough to attend the Longevity Investors Conference last month; this key event attracts those interested in learning about longevity investment opportunities and finding out more about the exciting directions in which the field is accelerating. To put it succinctly, as MIT Tech Review did recently, LIC “brings academic scientists and biotech companies together with deep-pocketed investors. We’re talking millionaires and billionaires.”

One of the driving forces behind the Longevity Investors Conference is Dr Tobias Reichmuth; a company-builder since the age of 21, Reichmuth has invested in more than 20 startups and is one of the founding partners of Maximon, the longevity company building. Along with his Maximon colleague Marc P Bernegger, Riechmuth launched the Longevity Investors Conference, and we couldn’t pass up the chance to grab some time with him to discuss the current longevity market.

Visit Longevity. Technology — https://bit.ly/3PwtH8Y

Follow Longevity. Technology on:
Twitter — https://bit.ly/3AMIXuq.
Facebook — https://bit.ly/3z8H1v5
Instagram — https://bit.ly/3IDvVRX
Linkedin — https://bit.ly/3yIfDmf

“Unexpected” — Scientists Discover an Anti-Aging Mechanism

A multinational team headed by University College London scientists has discovered a new mechanism that slows down and maybe even prevents the normal aging of immune cells, one of the nine “hallmarks of aging.”

The discovery in-vitro (cells) and validated in mice was “unexpected,” according to the researchers, who believe harnessing the mechanism might extend the life of the immune system, enabling people to live healthier and longer lives, and would also have therapeutic use for diseases such as cancer and dementia. Their findings were recently published in the journal Nature Cell Biology.

Explaining the study, lead author, Dr. Alessio Lanna, Honorary Professor at UCL Division of Medicine, said: Immune cells are on constant high-alert, always ready to fight pathogens. To be effective they also must persist for decades in the body – but the strategies employed to execute this life-long protection are largely unknown.

Optical Frequency Combs Moving into Biomedical Instrumentation?

“It’s like being able to see the mountain all at once—the whole landscape and the individual trees.” That’s how researcher Jun Ye describes direct frequency-comb absorption spectroscopy. Ye and his JILA/National Institute of Standards and Technology colleagues in Boulder, CO, used optical frequency combs to analyze complex gas mixtures for a forthcoming IEEE Transactions on Plasma Science paper on a novel cold-plasma sterilization method.

The system bathes surfaces—agar plates, plastic ID badges (a “major vector for pathogen transmission…currently not subject to any disinfection/sterilization procedures…”), biofilms, and mouse skin (free-radical-rich gases have been shown to disinfect wounds and speed healing)—and mixtures of plasma-derived ozone (O3), hydrogen peroxide (H2O2), nitrous oxide (N2O), and nitrogen dioxide (NO2). It appears to work well, deactivating most surface bacteria in 15 to 60 seconds.

A further object of the study, however, was to discover exactly which gas proportions provided the most effective sterilization. The mix of gases, each with its own pattern of absorption transitions, made monitoring the flow a challenge for conventional Fourier transform infrared (FTIR) absorption spectroscopy.

Nanoparticles in Medicine—Microbots to Blood Clots

As nanotechology burrows into an increasing number of medical technologies, new developments in nanoparticles point to the ways that treatments can today be nanotechnologically targeted. In one case, would-be end effectors on microrobots are aimed at clearing up cases of bacterial pneumonia. In another, a smart-targeting system may decrease clotting risks in dangerous cases of thrombosis.

Scientists from the University of California, San Diego, demonstrated antibiotic-filled nanoparticles that hitch a ride on microbots made of algae to deliver targeted therapeutics. Their paper was recently published in Nature Materials. As a proof of concept, the researchers administered antibiotic-laden microbots to mice infected with a potentially fatal variety of pneumonia (a strain that is common in human patients who are receiving mechanical ventilation in intensive-care settings). All infections in the treated mice cleared up within a week, while untreated mice died within three days.

The algae–nanoparticle hybrid microbots were effectively distributed to infected tissue through lung fluid and showed negligible toxicity. “Our goal is to do targeted drug delivery into more challenging parts of the body, like the lungs,” said bioengineering professor Liangfang Zhang in a press statement. “And we want to do it in a way that is safe, easy, biocompatible, and long lasting.”

A combination of micro and macro methods sheds new light on how different brain regions are connected

“It is not enough to study brain connectivity with one single method, or even two,” says HBP Scientific Director and author of the Science article Katrin Amunts, who leads the Institute of Neuroscience and Medicine (INM-1) at Forschungszentrum Jülich and the C. & O. Vogt Institute of Brain Research at the University Hospital Düsseldorf. “The connectome is nested at multiple levels. To understand its structure, we need to look at several spatial scales at once by combining different experimental methods in a multi-scale approach and by integrating the obtained data into multilevel atlases such as the Julich Brain Atlas that we have developed.”

Markus Axer from Forschungszentrum Jülich and the Physics Department of the University of Wuppertal, who is the first author of the Science article, has together with his team at INM-1 developed a unique method called 3D Polarised Light Imaging (3D-PLI) to visualise nerve fibres at microscopic resolution. They trace the three-dimensional courses of fibres across serial brain sections with the aim of developing a 3D fibre atlas of the entire human brain.

Together with other HBP researchers from Neurospin in France and the University of Florence in Italy, Axer and his team have recently imaged the same tissue block from a human hippocampus using several different methods: anatomical and diffusion magnetic resonance imaging (aMRI and dMRI), two-photon fluorescence microscopy (TPFM) and 3D-PLI, respectively.

/* */