Toggle light / dark theme

Zapping brain cancer with long needles opens door to new treatments

University of Saskatchewan (USask) researchers have developed a new method of killing brain cancer cells while preserving the delicate tissue around it. The technique also has a remarkable side-benefit: making chemotherapy treatment of brain cancer suddenly possible.

The technique involves placing long needles through the skull and sending pulses of into a glioblastoma tumor—the pernicious variety of brain cancer that caused Tragically Hip frontman Gord Downie’s death.

“A safer and more effective cancer treatment may be clinically possible,” said Dr. Mike Moser (MD), USask College of Medicine general surgery researcher and co-author of a study published recently in the Journal of Biomechanical Engineering.

Like a human? Artificial neural networks need to sleep to learn better

It’s time to go to bed for artificial neurons.

According to a recent study by the University of California, San Diego, neural networks can imitate the sleep patterns of the human brain in order to tackle catastrophic forgetting.

“The brain is very busy when we sleep, repeating what we have learned during the day,” said Maxim Bazhenov, Ph.D., professor of medicine and a sleep researcher at the University of California San Diego School of Medicine in the press release. “Sleep helps reorganize memories and presents them in the most efficient way.”

Sleep strengthens rational memory, the capacity to recall arbitrary or illogical associations between objects, people, or events, and guards against forgetting previous memories, according to research by Bazhenov and colleagues.

AI tailors artificial DNA for future drug development

With the help of an AI, researchers at Chalmers University of Technology, Sweden, have succeeded in designing synthetic DNA that controls the cells’ protein production. The technology can contribute to the development and production of vaccines, drugs for severe diseases, as well as alternative food proteins much faster and at significantly lower costs than today.

How genes are expressed is a process that is fundamental to the functionality of cells in all living organisms. Simply put, the in DNA is transcribed to the molecule messenger RNA (mRNA), which tells the cell’s factory which to produce and in which quantities.

Researchers have put a lot of effort into trying to control gene expression because, among other things, it can contribute to the development of protein-based drugs. A recent example is the mRNA vaccine against COVID-19, which instructed the body’s cells to produce the same protein found on the surface of the coronavirus.

Protein shapes could indicate Parkinson’s disease

ETH Zurich researchers have found that a set of proteins have different shapes in the spinal fluid of healthy individuals and Parkinson’s patients. These could be used in the future as a new type of biomarker for this disease.

Many human diseases can be detected and diagnosed using biomarkers in blood or other . Parkinson’s disease is different: to date, there is no such being used in the clinicto indicate this neurodegenerative disease.

A team led by ETH Zurich Professor Paola Picotti could now help to close this gap. In a study just published in the journal Nature Structural and Molecular Biology, the researchers present 76 proteins that might serve as biomarkers for the detection of Parkinson’s disease.

Medicinal Movement for Helping Your Body Heal — Powerplate Vibrational Technology

Receive a $600 discount off your Powerplate at:
https://getpowerplate.com/panacea.

Health, Healing and Happiness with Nathan Crane.

Download Your Free Ebook and Guided Meditation:
http://www.NathanCrane.com.

Cancer; The Integrative Perspective — Documentary Film.

Home New

The Health and Healing Club — Online Education Membership.
https://www.healthandhealingclub.com/

Indian Surgeon’s Groundbreaking Cancer Research Saves the Lives of 1000s of Women

When Lady Meherbai Tata died of leukaemia on 18 June 1931, her husband, Sir Dorabji Tata, Jamsetji Tata’s son and a key figure of the Tata Group endowed the Lady Tata Memorial Trust with a corpus for research into leukaemia in memory of his wife. He set out to establish high-quality facilities for cancer treatment in India.

(Images above of Dr. Indraneel Mittra and a representational photo of middle-aged women.)

Out of this humanitarian commitment emerged the now well-renowned Tata Memorial Hospital, commissioned by the Sir Dorabji Tata Trust on 28 February 1941.

New CRISPR gene-editing system can “drag-and-drop” DNA in bulk

A new technique has been added to the CRISPR gene-editing toolbox. Known as PASTE, the system uses virus enzymes to “drag-and-drop” large sections of DNA into a genome, which could help treat a range of genetic diseases.

The CRISPR system originated in bacteria, which used it as a defense mechanism against viruses that prey on them. Essentially, if a bacterium survived a viral infection, it would use CRISPR enzymes to snip out a small segment of the virus DNA, and use that to remind itself how to fight off future infections of that virus.

Over the past few decades, scientists adapted this system into a powerful tool for genetic engineering. The CRISPR system consists of an enzyme, usually one called Cas9, which cuts DNA, and a short RNA sequence that guides the system to make this cut in the right section of the genome. This can be used to snip out problematic genes, such as those that cause disease, and can substitute them with other, more beneficial genes. The problem is that this process involves breaking both strands of DNA, which can be difficult for the cell to patch back up as intended, leading to unintended alterations and higher risks of cancer in edited cells.

A Bizarre Case of Hypertension Immunity

Scientists in Berlin have been studying a strange hereditary condition that causes half the people in certain families to have shockingly short fingers and abnormally high blood pressure for decades. If untreated, affected individuals often die of a stroke at the age of 50. Researchers at the Max Delbrück Center (MDC) in Berlin discovered the origin of the condition in 2015 and were able to verify it five years later using animal models: a mutation in the phosphodiesterase 3A gene (PDE3A) causes its encoded enzyme to become overactive, altering bone growth and causing blood vessel hyperplasia, resulting in high blood pressure.

“High blood pressure almost always leads to the heart becoming weaker,” says Dr. Enno Klußmann, head of the Anchored Signaling Lab at the Max Delbrück Center and a scientist at the German Centre for Cardiovascular Research (DZHK). As it has to pump against a higher pressure, Klußmann explains, the organ tries to strengthen its left ventricle. “But ultimately, this results in the thickening of the heart muscle – known as cardiac hypertrophy – which can lead to heart failure greatly decreasing its pumping capacity.”

/* */