Toggle light / dark theme

New gene-editing technique reverses vision loss in mice

Researchers in China have successfully restored the vision of mice with retinitis pigmentosa, one of the major causes of blindness in humans. The study, to be published March 17 in the Journal of Experimental Medicine, uses a new, highly versatile form of CRISPR-based genome editing with the potential to correct a wide variety of disease-causing genetic mutations.

Researchers have previously used genome editing to restore the vision of mice with , such as Leber , that affect the , a layer of non-neuronal cells in the eye that supports the light-sensing rod and cone photoreceptor cells. However, most inherited forms of blindness, including , are caused by in the neural photoreceptors themselves.

“The ability to edit the genome of neural retinal cells, particularly unhealthy or dying photoreceptors, would provide much more convincing evidence for the potential applications of these genome-editing tools in treating diseases such as retinitis pigmentosa,” says Kai Yao, a professor at the Wuhan University of Science and Technology.

Understanding how exercise induces systemic metabolic benefits

Northwestern Medicine scientists have uncovered a mechanism by which exercise activates metabolic benefits in the body, according to a new study published in Cell Metabolism.

It’s well known that exercise elicits many . However, how this is accomplished is not yet well understood. During exercise, , the body’s cellular recycling system that allows old or damaged cellular structures to be broken down, is activated in both contracting muscles and various non-contracting organs, such as the liver.

In the study, investigators performed proteomic analyses on the blood of mice before and after exercise. They identified a protein secreted from contracting muscle, FN1, which significantly increased in the plasma and serum of mice after exercise.

Superconducting Breakthrough! This REALLY Changes Everything!

Superconducting at 69F!
Advanced superconducting materials at room temperature will bring about a paradigm shift in human technology and help us make great advances in energy, medicine, electronics and space explorations.
The Terran Space Academy walks you through the importance of the latest discovery, the details behind their research, and the space technologies it will immediately impact.
Shop the Academy store at… https://shop.spreadshirt.com/terran-s… help support our channel at… https://www.patreon.com/terranspaceac

Thank you so much for watching!

Ad Astra Pro Terra.

Artists.

https://twitter.com/C_Bass3d.

https://twitter.com/hazegrayart.
https://twitter.com/AlexSvanArt.
https://twitter.com/_fragomatik_
https://twitter.com/nickhenning3d.
https://twitter.com/RGVaerialphotos.

Companies.

A new way to remove waste from the brain after hemorrhage

Intracerebral hemorrhage, and bleeding into the brain tissue, is a devastating neurological condition affecting millions of people annually. It has a high mortality rate, while survivors are affected by long-term neurological deficits. No medication has been found to support brain recovery following hemorrhage.

In an , researchers from the Brain Repair laboratory, University of Helsinki, together with their Taiwanese colleagues investigated whether a protein called cerebral dopamine (CDNF) has potential as a treatment for brain hemorrhage.

Researchers suggest that cerebral dopamine neurotrophic factor, a protein being currently tested for Parkinson’s disease treatment, also has therapeutic effects and enhances immune cell’s response after brain hemorrhage.

Humans in 2100 could be ageless bionic hybrids & Elon Musk-style ‘cyborgs’

HUMANS in the next 100 years could be part-machine, part-flesh creatures with brain chips and bionic limbs and organs in a vision of “cyborgs” once described by Elon Musk.

Men and women born around 2100 could live in a world very different to ours as humans may be totally connected to the internet and meshed together with artificial intelligence.

Mobile phones would no longer be needed — as everything you now do with your smartphone will now be done with a chip in your brain.

The relationship between intestinal microbiome dysbiosis and atherosclerosis

In a recent review published in the International Journal of Molecular Sciences, researchers in Canada investigate the impact of intestinal microbiota dysbiosis on atherosclerotic cardiovascular disease (ASCVD) incidence.

Study: Role of the Gut Microbiome in the Development of Atherosclerotic Cardiovascular Disease. Image Credit: ART-ur / Shutterstock.com

AI Image Generation Using DALL-E 2 Has Promising Future in Radiology

Summary: Text-to-image generation deep learning models like OpenAI’s DALL-E 2 can be a promising new tool for image augmentation, generation, and manipulation in a healthcare setting.

Source: JMIR Publications

A new paper published in the Journal of Medical Internet Research describes how generative models such as DALL-E 2, a novel deep learning model for text-to-image generation, could represent a promising future tool for image generation, augmentation, and manipulation in health care.

New killer CRISPR system is unlike any scientists have seen

“It’s poor for that particular cell, but it protects the whole colony of bacteria so that virus doesn’t spread through it,” said Jackson.

CRISPR vs. cancer: The newly published papers detail the structure and function of Cas12a2, but more research is needed to determine how we might be able to harness this system for our benefit.

The good news, so far, is that looks programmable, meaning we might be able to use it to kill certain cells, such as those with cancerous mutations, while leaving healthy cells unharmed.

A comprehensive circuit mapping study reveals many unexpected facts about the norepinephrine neurons in the brainstem

A small nucleus in the brainstem called locus coeruleus (literally the “blue spot,”) is the primary source of a major neuromodulator, norepinephrine (NE), an important mediator of the ‘fight or flight’ response in animals. However, very little is known about the local connections of this small albeit critically important group of neurons. A recent pioneering study published in eLife from the laboratory of Dr. Xiaolong Jiang, investigator at the Jan and Dan Duncan Neurological Research Institute (Duncan NRI) at Texas Children’s Hospital and assistant professor at Baylor College of Medicine, now reveals the cellular composition and circuit organization of the locus coeruleus in adult mice.

“In this study, we undertook the arduous task of mapping local connections of NE-producing neurons in the locus coeruleus,” Dr. Jiang said. “This is the first study of such an unprecedented magnitude and detail to be performed on the locus coeruleus, and in fact, on any monoamine neurotransmitter system. Our study has revealed that the neurons in the locus coeruleus have an unexpectedly rich cellular heterogeneity and local wiring logic.”

Locus coeruleus (LC) is known to house the vast majority of norepinephrine-releasing neurons in the brain and regulates many fundamental brain functions including the fight and flight response, sleep/wake cycles, and attention control. Present in the pontine region of the brainstem, LC neurons sense any existential dangers or threats in our external environment and send signals to alert other brain regions of the impending danger.

/* */