In a paper published today in Sciences Advances, researchers in the Department of Chemistry and the Department of Physics & Astronomy at the University of California, Irvine revealed new details about a key enzyme that makes DNA sequencing possible. The finding is a leap forward into the era of personalized medicine when doctors will be able to design treatments based on the genomes of individual patients.
Category: biotech/medical – Page 1205
None.
In a new article published in eNeuro, fifteen leading scientists of the European Human Brain Project (HBP) outline how a new culture of collaboration and an era of digitalization has transformed neuroscience research over the last decade.
“The way we study the brain has changed fundamentally in recent years,” says first author Katrin Amunts, HBP Scientific Director, Director of the C. and O. Vogt-Institute of Brain Research, Düsseldorf and Director at the Institute of Neuroscience and Medicine at Research Centre Jülich. “In the past, separate communities have often focused on specific aspects of neuroscience, and the problem was always how to link the different worlds, for example, in order to explain a certain cognitive function in terms of the underlying neurobiology.”
Brain research has in recent years indisputably entered a new epoch, driven by substantial methodological advances and digitally enabled data integration and modeling at multiple scales – from molecules to the whole system. Major advances are emerging at the intersection of neuroscience with technology and computing. This new science of the brain integrates high-quality basic research, systematic data integration across multiple scales, a new culture of large-scale collaboration and translation into applications. A systematic approach, as pioneered in Europe’s Human Brain Project (HBP), will be essential in meeting the pressing medical and technological challenges of the coming decade.
WASHINGTON (AP) — Drugmaker Moderna asked the Food and Drug Administration on Thursday to authorize a fourth shot of its COVID-19 vaccine as a booster dose for all adults.
The request is broader than rival pharmaceutical company Pfizer’s request earlier this week for the regulator to approve a booster shot for all seniors.
In a press release, the company said its request for approval for all adults was made “to provide flexibility” to the Centers for Disease Control and Prevention and medical providers to determine the “appropriate use” of a second booster dose of the mRNA vaccine, “including for those at higher risk of COVID-19 due to age or comorbidities.”
A research team from KTH Royal Institute of Technology and Max Planck Institute of Colloids and Interfaces reports to have found the key to controlled fabrication of cerium oxide mesocrystals. The research is a step forward in tuning nanomaterials that can serve a wide range of uses—including solar cells, fuel catalysts and even medicine.
Mesocrystals are nanoparticles with identical size, shape and crystallographic orientation, and they can be used as building blocks to create artificial nanostructures with customized optical, magnetic or electronic properties. In nature, these three-dimensional structures are found in coral, sea urchins and calcite desert rose, for example. Artificially-produced cerium oxide (CeO2) mesocrystals—or nanoceria—are well-known as catalysts, with antioxidant properties that could be useful in pharmaceutical development.
“To be able to fabricate CeO2 mesocrystals in a controlled way, one needs to understand the formation mechanism of these materials,” says Inna Soroka, a researcher in applied physical chemistry at KTH. She says the team used radiation chemistry to reveal for the first time the ceria mesocrystal formation mechanism.
Re-engineering clinical trials around participants — katie baca-motes, co-founder, scripps research digital trials center, scripps research.
Katie Baca-Motes, MBA, (https://www.scripps.edu/science-and-medicine/translational-i…aca-motes/) is Senior Director, Strategic Initiatives at the Scripps Research Translational Institute, and Co-Founder of the Scripps Research Digital Trials Center (https://digitaltrials.scripps.edu/).
Katie leads various initiatives, including launching their new Digital Trials Center, focusing on expanding the institute’s portfolio of decentralized clinical trial initiatives including: DETECT, a COVID-19 research initiative, PowerMom, a maternal health research program and PROGRESS, an upcoming T2 Diabetes/Precision Nutrition program, as well as overseeing the institute’s role in the NIH “All of Us” Research Program as a Participant Center.
Science of Aliens, Part 11
Posted in biotech/medical, science
Could Aliens Get Cancer? What is it´s root cause and would cancer evolve in an Alien Biosphere?
Would you share your data for the common good? Biomechanist Jacqueline Alderson shows how sophisticated simulations based on real data can help prevent disease, illness and injury. Jacqueline Alderson is an Associate Professor of Biomechanics at the University of Western Australia and Adjunct Professor of Human Performance, Innovation and Technology at the Auckland University of Technology. She has always been curious about movement — whether it’s helping surgeons make best practice decisions or helping AFL players avoid knee injuries. She now travels the world to share her knowledge in human movement, wearable tech and artificial intelligence and its role in tracking, analysing and intervening in the human condition. This talk was given at a TEDx event using the TED conference format but independently organized by a local community.
While many people in wealthier countries have been vaccinated against COVID-19, there is still a need for vaccination in much of the world. A new vaccine developed at MIT and Beth Israel Deaconess Medical Center may aid in those efforts, offering an inexpensive, easy-to-store, and effective alternative to RNA vaccines.
In a new paper, the researchers report that the vaccine, which comprises fragments of the SARS-CoV-2 spike protein arrayed on a virus-like particle, elicited a strong immune response and protected animals against viral challenge.
The vaccine was designed so that it can be produced by yeast, using fermentation facilities that already exist around the world. The Serum Institute of India, the world’s largest manufacturer of vaccines, is now producing large quantities of the vaccine and is running a clinical trial in Africa.