Toggle light / dark theme

Talk Title: Human Age Reversal through Mitochondrial Transplantation.

Tom Benson, CEO at Mitrix Bio, presents at Investing in the Age of Longevity 2022. In his talk, Tom outlines the effect of mitochondria on aging, and how mitochondrial transplantation can be used for age reversal. Showcasing how Mitrix Bio is pioneering the application of this technique, Tom also presents the company’s roadmap for clinical trials and commercialisation of its platform.

Download the presentation slides: https://bit.ly/IAL22-Tom-Benson.

Investing in the Age of Longevity 2022 was held in London on 17 November 2022. The one-day masterclass featured presentations from scientists and business leaders at the cutting edge of the field, giving participants the inside track on the latest aging-related discoveries and investment opportunities.

Download the event programme: https://www.masterinvestor.co.uk/IAL22

Find out more about past and upcoming Master Investor events: https://events.masterinvestor.co.uk

Our ability to learn, move, and sense our world comes from the neurons in our brain. This information moves through our brain between neurons that are linked together by tens of trillions of tiny structures called synapses. Although tiny, synapses are not simple and must be precisely organized to function properly. Indeed, diseases like autism and Alzheimer’s are increasingly linked to defects in the organization and number of these tiny structures. Now researchers at Thomas Jefferson University have found a new way in which synapses organization is controlled, which could eventually lead to better treatments for neurological diseases.

Researchers who study how grow and are lost have long focused on a molecule called PSD-95, which helps create and maintain the scaffolding around which a synapse is built. A new paper, publishing in Nature Neuroscience October 19th, reveals that a second protein interacts with PSD-95 and enables adaptive changes, such as changes in sensation, to be translated into changes in the synaptic scaffold, changing the amount of PSD-95 at the synapse.

“We can’t see or learn or talk without synapses working properly,” says senior author Matthew Dalva, Ph.D., Associate Professor of Neuroscience at the Sidney Kimmel Medical College at Thomas Jefferson University and the Farber Institute of Neuroscience at Jefferson and leader of the Theme Team for Synapse Biology. “We need a better understanding of how the works normally in order to develop a better sense of where to intervene to stop or cure diseases of the brain. It’s important to understand how these molecules interact.”

Computers and information technologies were once hailed as a revolution in education. Their benefits are undeniable. They can provide students with far more information than a mere textbook. They can make educational resources more flexible, tailored to individual needs, and they can render interactions between students, parents, and teachers fast and convenient. And what would schools have done during the pandemic lockdowns without video conferencing?

The advent of AI chatbots and large language models such as OpenAI’s ChatGPT, launched last November, create even more new opportunities. They can give students practice questions and answers as well as feedback, and assess their work, lightening the load on teachers. Their interactive nature is more motivating to students than the imprecise and often confusing information dumps elicited by Google searches, and they can address specific questions.

The algorithm has no sense that “love” and “embrace” are semantically related.

Twenty years ago, following the initial sequencing of the human genome, geneticists started carrying out extensive genome-wide association studies to find genomic regions connected to human disease.

In addition to the DNA sequence, another stable level of molecular data created during development called epigenetic modifications also plays a role in disease risk.

Researchers have been examining these epigenetic changes for more than ten years to look for links to disease. More than a thousand of these epigenome-wide association studies have been published as of late.

The inside of a person’s mouth can say a lot about their overall health. Studies have established links between poor oral health and conditions like heart disease, high blood pressure and pneumonia. Now, a new study shows there’s a connection to the brain. Researchers in the U.K. found certain bacteria in the mouth may cause deadly brain abscesses.

This shapeshifting controls the biological processes of living things—for example, opening the protein tunnels dotted along neurons or driving cancerous growth. But it also makes understanding protein behavior and developing drugs that interact with proteins a challenge.

While recent AI breakthroughs in the prediction (and even generation) of protein structures are a huge advance 50 years in the making, they still only offer snapshots of proteins. To capture whole biological processes—and identify which lead to diseases—we need predictions of protein structures in multiple “poses” and, more importantly, how each of these poses changes a cell’s inner functions. And if we’re to rely on AI to solve the challenge, we need more data.

Thanks to a new protein atlas published this month in Nature, we now have a great start.