Toggle light / dark theme

Assembly instructions for enzymes: Universal rules can help to design an optimal enzyme from scratch

In biology, enzymes have evolved over millions of years to drive chemical reactions. Scientists from the Max Planck Institute for Dynamics and Self-Organization (MPI-DS) have now derived universal rules to enable the de novo design of optimal enzymes.

The paper is published in the journal Chem Catalysis.

As an example, they considered the of breaking a dimer into two monomer molecules. Considering the geometry of such an enzyme-substrate-complex, they identified three golden rules that should be considered to build a functional enzyme.

Bimodal video imaging platform predicts hyperspectral frames from RGB video

Hyperspectral imaging (HSI), or imaging spectroscopy, captures detailed information across the electromagnetic spectrum by acquiring a spectrum for each pixel in an image. This enables precise identification of materials through their spectral signatures.

HSI supports Earth remote sensing applications such as automated classification, abundance mapping, and estimation of physical and biological properties like soil moisture, sediment density, , biomass, leaf area, and pigment content.

Although HSI offers detailed insight into a remote sensing scene, HSI data may not be readily available for an intended application. Recent studies have attempted to combine HSI with traditional red-green-blue (RGB) video acquisition to lower costs and improve performance. However, this fusion technology still faces technical challenges.

Moving pictures: Researchers use movies to diagnose EV battery failure

Charging electric-vehicle batteries in Ithaca’s frigid winter can be tough, and freezing temperatures also decrease the driving range. Hot weather can be just as challenging, leading to decomposition of battery materials and, possibly, catastrophic failure.

For (EVs) to be widely accepted, safe and fast-charging lithium-ion batteries need to be able to operate in extreme temperatures. But to achieve this, scientists need to understand how materials used in EVs change during temperature-related chemical reactions, a so-far elusive goal.

Now, Cornell chemists led by Yao Yang, Ph.D. ‘21, assistant professor of chemistry and chemical biology in the College of Arts and Sciences, have developed a way to diagnose the mechanisms behind battery failure in extreme climates using electron microscopy. Their first-of-its-kind operando (“operating”) electrochemical transmission electron microscopy (TEM) enables them to watch chemistry in action and collect real-time movies showing what happens to energy materials during temperature changes.

Radiotrophic fungus

Scientists discover fungus species in Chernobyl nuclear zone have mutated to feed on radiation:

Cryptococcus neoformans, discovered at the site in 1991, feeds on radiation through a process called radiosynthesis. Its high levels of melanin absorb harmful radiation and convert it into chemical energy, much like how plants use photosynthesis to create energy.

NASA scientists, in collaboration with Johns Hopkins University, are now testing melanin extracted from the fungi aboard the International Space Station. ’ If successful, this natural shield could protect astronauts and equipment from cosmic rays, a significant challenge for long-term space exploration. “Space radiation is dangerous and damages matter,” explains researcher Radamés J.B. Cordero. “A material like this could shield astronauts and benefit people here on Earth.” This discovery turns a remnant of a nuclear disaster into a potential lifesaver for humanity’s journey into the cosmos.

Learn more.


Radiotrophic fungi are fungi that can perform the hypothetical biological process called radiosynthesis, which means using ionizing radiation as an energy source to drive metabolism. It has been claimed that radiotrophic fungi have been found in extreme environments such as in the Chernobyl Nuclear Power Plant.

Most radiotrophic fungi use melanin in some capacity to survive. [ 1 ] The process of using radiation and melanin for energy has been termed radiosynthesis, and is thought to be analogous to anaerobic respiration. [ 2 ] However, it is not known if multi-step processes such as photosynthesis or chemosynthesis are used in radiosynthesis or even if radiosynthesis exists in living organisms.

/* */