Toggle light / dark theme

Get a Wonderful Person Tee: https://teespring.com/stores/whatdamath.
More cool designs are on Amazon: https://amzn.to/3QFIrFX
Alternatively, PayPal donations can be sent here: http://paypal.me/whatdamath.

Hello and welcome! My name is Anton and in this video, we will talk about new discoveries about bacterial communication.
Links:
https://www.science.org/doi/10.1126/sciadv.adj1539
https://www.lboro.ac.uk/news-events/news/2025/january/cyanob…formation/
https://en.wikipedia.org/wiki/Prochlorococcus.

The Ocean Teems With Networks of Interconnected Bacteria


Previous video:

#biology #bacteria #biofilm.

0:00 Bacterial communication.
0:35 Cyanobacteria complexity.
3:00 Most prominent bacterium in the ocean.
4:10 Bizarre discoveries of nanotubes.
5:25 Possible explanations and studies trying to figure it out.
6:15 Recent study finds interspecies communication.
8:10 Entirely new way to communicate or a trade network?
9:30 Questions and future studies.
10:50 Conclusions.

Support this channel on Patreon to help me make this a full time job:
https://www.patreon.com/whatdamath.

Bitcoin/Ethereum to spare? Donate them here to help this channel grow!
bc1qnkl3nk0zt7w0xzrgur9pnkcduj7a3xxllcn7d4
or ETH: 0x60f088B10b03115405d313f964BeA93eF0Bd3DbF

Space Engine is available for free here: http://spaceengine.org.

Lucy, an early human ancestor, could run upright but much slower than modern humans. New simulations show that muscle and tendon evolution, not just skeletal changes, were key to improving human running speed.

The University of Liverpool has led an international team of scientists in a new investigation into the running abilities of Australopithecus afarensis, the early human ancestor best known through the famous fossil “Lucy.”

Professor Karl Bates, an expert in Musculoskeletal Biology, brought together specialists from institutions in the UK and the Netherlands. Using advanced computer simulations and a digital reconstruction of Lucy’s skeleton, the team explored how this ancient species.

Researchers have discovered a biological mechanism that makes plant roots more welcoming to beneficial soil microbes. This discovery by John Innes Centre researchers paves the way for more environmentally friendly farming practices, potentially allowing farmers to use less fertilizer.

Production of most major crops relies on nitrate and phosphate fertilizers, but excessive fertilizer use harms the environment. If we could use mutually beneficial relationships between and soil microbes to enhance , then we could potentially reduce the use of inorganic fertilizers.

Researchers in the group of Dr. Myriam Charpentier discovered a mutation in a gene in the legume Medicago truncatula that reprograms the signaling capacity of the plant so that it enhances partnerships with nitrogen fixing bacteria called rhizobia and arbuscular mycorrhiza fungi (AMF) which supply roots with phosphorus.

Researchers have innovatively merged protein structural data with genetic sequences to construct evolutionary trees, revealing deep-rooted relationships among species.

A species is a group of living organisms that share a set of common characteristics and are able to breed and produce fertile offspring. The concept of a species is important in biology as it is used to classify and organize the diversity of life. There are different ways to define a species, but the most widely accepted one is the biological species concept, which defines a species as a group of organisms that can interbreed and produce viable offspring in nature. This definition is widely used in evolutionary biology and ecology to identify and classify living organisms.

In a bold new theory, researchers from Microsoft, Brown University, and other institutions suggest that the universe might be capable of teaching itself how to evolve. Their study, published on the preprint server arXiv, proposes that the physical laws we observe today may have emerged through a gradual learning process, akin to Darwinian natural selection or self-learning algorithms in artificial intelligence.

This radical idea challenges traditional cosmology by imagining a primitive early universe where physical laws like gravity were far simpler or even static. Over time, these laws “learned” to adapt into more complex forms, enabling the structured universe we observe today. For instance, gravity might have initially lacked distinctions between celestial bodies like Earth and the Moon. This progression mirrors how adaptable traits in biology survive through natural selection.

Artificial neural networks (ANNs) have brought about many stunning tools in the past decade, including the Nobel-Prize-winning AlphaFold model for protein-structure prediction [1]. However, this success comes with an ever-increasing economic and environmental cost: Processing the vast amounts of data for training such models on machine-learning tasks requires staggering amounts of energy [2]. As their name suggests, ANNs are computational algorithms that take inspiration from their biological counterparts. Despite some similarity between real and artificial neural networks, biological ones operate with an energy budget many orders of magnitude lower than ANNs. Their secret? Information is relayed among neurons via short electrical pulses, so-called spikes. The fact that information processing occurs through sparse patterns of electrical pulses leads to remarkable energy efficiency.

In this video, we simplify gluconeogenesis, an essential metabolic pathway that helps your body maintain glucose levels during fasting or intense activity.

We’ll walk you through:
✔️ What gluconeogenesis is and why it’s important.
✔️ Key steps in the pathway.
✔️ Enzymes involved and their regulation.
✔️ How it ties into other metabolic processes.

Ready to make biochemistry easy? Watch now!

📄 Bonus for EasyPeasy Experts:
Get access to concise notes and practice quizzes on gluconeogenesis to solidify your understanding. Join our EasyPeasy Expert membership to unlock these exclusive resources!
Links for Glycolysis Videos:
• Cellular Respiration.
• Aerobic Respiration Part 1 (Glycolysis)
• Aerobic Respiration Part 2 (Pyruvate…
• Aerobic Respiration Part 4 (Electron…

🔔 Don’t forget to like, subscribe, and hit the bell icon to stay updated on more simple and engaging science lessons. Let’s make learning biology and chemistry easy-peasy!

The amorphous state of matter is the most abundant form of visible matter in the universe, and includes all structurally disordered systems, such as biological cells or essential materials like glass and polymers.

An is a solid whose molecules and atoms form disordered structures, meaning that they do not occupy regular, well-defined positions in space.

This is the opposite of what happens in crystals, whose ordered structure facilitates their , as well as the identification of those “defects,” which practically control the physical properties of crystals, such as their plastic yielding and melting, or the way an electric current propagates through them.

Of all the sciences, physics has been seen as the key to understanding everything. As Feynman said, “physics is the fundamental science.” But in this article, one of the world’s leading physicists, George F. R. Ellis, who collaborated with Stephen Hawking in work on spacetime’s geometry, argues that much of reality extends far beyond physics. Both complex objects like biological organisms and abstract entities like the rules of chess influence the world in ways that cannot be predicted by studying their simple physical constituents. Science, Ellis insists, is far richer than any single framework can ever capture.

1. Abstract Causation

Sign up to get exclusive access.