Toggle light / dark theme

Quantum and biological systems are seldom discussed together as they seemingly demand opposing conditions. Life is complex, “hot and wet” whereas quantum objects are small, cold and well controlled. Here, we overcome this barrier with a tardigrade — a microscopic multicellular organism known to tolerate extreme physiochemical conditions via a latent state of life known as cryptobiosis. We observe coupling between the animal in cryptobiosis and a superconducting quantum bit and prepare a highly entangled state between this combined system and another qubit. The tardigrade itself is shown to be entangled with the remaining subsystems. The animal is then observed to return to its active form after 420 hours at sub 10 mK temperatures and pressure of $6\times 10^{-6}$ mbar, setting a new record for the conditions that a complex form of life can survive.

Traditional robots can have difficulty grasping and manipulating soft objects if their manipulators are not flexible in the way elephant trunks, octopus tentacles, or human fingers can be.

In Applied Physics Reviews, investigators from Shanghai Jiao Tong University in China developed a type of multiple-segment soft manipulator inspired by these . The soft manipulators are based on pneu-nets, which are pneumatically actuated elastomeric structures.

These structures have a tentaclelike shape and consist of a series of connected internal chambers which can be inflated pneumatically, blowing them up like a balloon. One side of the tentacle is highly flexible while the other is stiffer. Increasing air pressure to the chambers causes the to bend toward the stiff side.

So the bristle worm jaw is both metal-like and yet not. As Zelaya-Lainez puts it, “Here we are dealing with a completely different material, but interestingly, the metal atoms still provide strength and deformability there, just like in a piece of metal.”

Observing the creation of a metal-like material from biological processes is a bit of a surprise and may suggest new approaches to materials development. “Biology could serve as inspiration here,” says Hellmich, “for completely new kinds of materials. Perhaps it is even possible to produce high-performance materials in a biological way — much more efficiently and environmentally friendly than we manage today.”

General anesthesia doesn’t just work on your brain or on your mind. It works on your consciousness. By altering the delicate electrochemical balance within the neural circuitry inside your head, the basic ground state of what it is to “be” is — temporarily — abolished. In this process lies one of the greatest remaining mysteries in science, and in philosophy too.

Somehow, within each of our brains, the combined activity of billions of neurons, each one a tiny biological machine, is giving rise to a conscious experience. And not just any conscious experience, your conscious experience, right here, right now.

OneZoom is a one-stop site for exploring all life on Earth, its evolutionary history, and how much of it is threatened with extinction.

The OneZoom explorer – available at onezoom.org – maps the connections between 2.2 million living species, the closest thing yet to a single view of all species known to science. The interactive tree of life allows users to zoom in to any species and explore its relationships with others, in a seamless visualisation on a single web page. The explorer also includes images of over 85,000 species, plus, where known, their vulnerability to extinction.

OneZoom was developed by Imperial College London biodiversity researcher Dr. James Rosindell and University of Oxford evolutionary biologist Dr. Yan Wong. In a paper published today in Methods in Ecology and Evolution, Drs Wong and Rosindell present the result of over ten years of work, gradually creating what they regard as “the Google Earth of biology.”

At this point, the paper mingles cosmology, or the study of the universe and its origins, with biology. “We ask whether there might be a mechanism woven into the fabric of the natural world, by means of which the universe could learn its laws,” the authors write. In other words, a universal law might transcend all scientific fields. That means that the laws of physics, as we know them, could be subject to higher-order laws of the universe that control them—and that we can’t even comprehend.

“Exploring links between fields is crucial because knowledge is not fundamentally compartmentalized,” says Bruce Bassett, professor at the University of Cape Town’s Department of Mathematics and head of the Cosmology Group at the African Institute of Mathematical Sciences in South Africa. We humans are simply narrow-minded. “We segment and compress knowledge into biology, and physics, and sociology because of our limited brains, and the cost of that segmentation and compression is that we easily miss the commonalities and hidden universality between branches of human knowledge.”

To sign up, go to http://brilliant.org/ProRobots/ and register for free.
Also, the first 200 people who click this link will get 20% off a year’s Premium subscription.

✅ Instagram: https://www.instagram.com/pro_robots.

You are on the channel PRO Robots and in this view we present to your attention the news of high technology. Robots as people: the most realistic robot humanoid in the world, luxury patching cars of the future, xenobots — nanorobots that have learned to multiply, nanochip for reprogramming living matter, drones with legs, universal robots, robotic cleaners and other high-tech news in one video! Watch the video to the end and write in the comments, which news seemed the most interesting?

0:00 In this video.

Listen: YouTube | Apple Podcasts | Spotify

In this episode, Dr. Huberman is joined by Dr. David Berson, Professor and Chairman of Neuroscience at Brown University. Dr. Berson discovered the neurons in your eye that set your biological rhythms for sleep, wakefulness, mood and appetite. He is also a world-renowned teacher of basic and advanced neuroscience, having taught thousands of university lectures on this topic. Many of his students have become world-leading neuroscientists and teachers themselves.

Here Dr. Berson takes us on a structured journey into and around the nervous system, explaining: how we perceive the world and our internal landscape, how we balance, see, and remember. Also, how we learn and perform reflexive and deliberate actions, how we visualize and imagine in our mind, and how the various circuits of the brain coordinate all these incredible feats.