Toggle light / dark theme

Back in March this year, a study published in Evolutionary Biology claimed that fossils categorized as Tyrannosaurus rex represent three separate species. However, a new study published on July 25 in Evolutionary Biology refutes this claim and suggests that the previous research lacked evidence and Tyrannosaurus rex is made of only one species.

The previously controversial research implied that T. rex should be reclassified as three different species, including the standard T. rex, the bulkier “T. imperator,” and the slimmer “T. regina.” Researchers analyzed 38 T. rex fossils that contained leg bones and teeth samples, a press release revealed.

However, paleontologists at the American Museum of Natural History and Carthage College were determined to review the data of the previous research, adding data points from 112 species of living dinosaurs—birds—and from four non-avian theropod dinosaurs.

Circa 2013


What if your running shoes could really adapt to your feet — and not just in the way that footwear retailers describe to solidify sales. These cutting-edge Protocells Trainers present the fascinating possibilities of wearable living materials that can grow, modify and repair themselves through continuous use.

Shamees Aden has been working with Dr. Martin Hanczyc on these innovative kicks, developing a synthetic biological substance that could be 3D printed to fit the wearer’s feet like gloves. The composite organic fabric would provide surface protection to toes and soles, yet it could also offer support skeletal and muscular. The anatomical tissue of the Protocells Trainers would thicken in areas that experience more pressure, and they could heal their own tears while bottled in a special solution overnight.

Circa 2016


Penn State scientists made a coating that allows conventional textiles used in everyday clothing to patch themselves up. Derived from squid ring teeth, the coating can turn virtually any fabric into a self-healing one. Simply adding water is enough to kick start the repairing process.

Nano research has already revealed the potential of self-cleaning clothes, and now a new study reveals the potential for similar technology in suits that can be used to protect soldiers from chemical or biological attacks.

To understand the architecture of human language, it is critical to examine diverse languages; however, most cognitive neuroscience research has focused on only a handful of primarily Indo-European languages. Here we report an investigation of the fronto-temporo-parietal language network across 45 languages and establish the robustness to cross-linguistic variation of its topography and key functional properties, including left-lateralization, strong functional integration among its brain regions and functional selectivity for language processing. fMRI reveals similar topography, selectivity and inter-connectedness of language brain areas across 45 languages. These properties may allow the language system to handle the shared features of languages, shaped by biological and cultural evolution.

Proteins serve a variety of purposes in plants in addition to being the fundamental building blocks of life. More than 20 billion protein molecules make up a typical plant cell, helping to stabilize its structure and sustain cellular metabolism.

Researchers at Heidelberg University’s Centre for Organismal Studies have shed light on a biological process that increases the life of plant proteins. They have now discovered a crucial protein, called N-terminal acetylation, that controls this mechanism. The study’s findings were published in the journals Molecular Plant and Science Advances.

N-terminal acetylation is a chemical marker that develops during the production of proteins. Plants do this by affixing an acetic acid.

From its very inception quantum mechanics troubled physicists. It seemed to challenge our conception of reality and lead to apparent contradictions. One of the founders of quantum mechanics, Ernst Heisenberg, questioned whether the theory offered a description of reality at all. Others, like Niels Bohr, claimed that somehow human consciousness played a role in the theory. In this interview, Carlo Rovelli explains Heisenberg’s anti-realist motivations, clarifies the role of the “observer” in quantum mechanics, and articulates his relational interpretation of the theory, according to which reality is a network of interactions.

Carlo Rovelli will debate Sabine Hossenfelder and Eric Weinsten in the FREE IAI Live event, ‘Quantum Physics and the End of Reality’ on July 25th. Learn more here.

The founders of quantum mechanics were very uncomfortable with its results – famously Einstein thought it an incomplete theory and quipped “God doesn’t play dice”, and Schrödinger abandoned physics altogether for biology. What was so radically different about quantum mechanics than classical physics that caused such discomfort to its own creators?

Penn State agricultural engineers have developed, for the first time, a prototype “end-effector” capable of deftly removing unwanted apples from trees—the first step toward robotic, green-fruit thinning.

The development is important, according to Long He, assistant professor of agricultural and , because manual thinning is a labor-intensive task, and the shrinking labor force in apple production makes manual thinning economically infeasible. His research group in the College of Agricultural Sciences conducted a new study that led to the end-effector.

The apple crop is a high-value agricultural commodity in the U.S., with an annual total production of nearly 10 billion pounds and valued at nearly $3 billion, according to He, who is a leader in agricultural robotics research, previously developing automated components for mushroom picking and apple tree pruning. Green-fruit thinning—the process of discarding excess fruitlets in , mainly to increase the remaining fruit size and quality—is one of the most important aspects of apple production.

We’re proud to be a platinum sponsor of ICML, the annual conference on machine learning. Learn about Amazon’s presence at the conference, accepted publications,… See more.


The International Conference on Machine Learning (ICML) is the premier gathering of professionals dedicated to the advancement of the branch of artificial intelligence known as machine learning. The conference is globally renowned for presenting and publishing cutting-edge research on all aspects of machine learning used in closely related areas like artificial intelligence, statistics and data science, as well as important application areas such as machine vision, computational biology, speech recognition, and robotics.