Toggle light / dark theme

Research in animal models has demonstrated that stem-cell derived heart tissues have promising potential for therapeutic applications to treat cardiac disease. But before such therapies are viable and safe for use in humans, scientists must first precisely understand on the cellular and molecular levels which factors are necessary for implanted stem-cell derived heart cells to properly grow and integrate in three dimensions within surrounding tissue.

New findings from the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS) make it possible for the first time to monitor the functional development and maturation of cardiomyocytes—the responsible for regulating the heartbeat through synchronized —on the single-cell level using -embedded . The devices—which are flexible, stretchable, and can seamlessly integrate with living cells to create “cyborgs”—are reported in a Science Advances paper.

“These mesh-like nanoelectronics, designed to stretch and move with growing tissue, can continuously capture long-term activity within individual stem-cell derived cardiomyocytes of interest,” says Jia Liu, co-senior author on the paper, who is an assistant professor of bioengineering at SEAS, where he leads a lab dedicated to bioelectronics.

Robots are all around us, from drones filming videos in the sky to serving food in restaurants and diffusing bombs in emergencies. Slowly but surely, robots are improving the quality of human life by augmenting our abilities, freeing up time, and enhancing our personal safety and well-being. While existing robots are becoming more proficient with simple tasks, handling more complex requests will require more development in both mobility and intelligence.

Columbia Engineering and Toyota Research Institute computer scientists are delving into psychology, physics, and geometry to create algorithms so that robots can adapt to their surroundings and learn how to do things independently. This work is vital to enabling robots to address new challenges stemming from an aging society and provide better support, especially for seniors and people with disabilities.

A longstanding challenge in computer vision is object permanence, a well-known concept in psychology that involves understanding that the existence of an object is separate from whether it is visible at any moment. It is fundamental for robots to understand our ever-changing, dynamic world. But most applications in computer vision ignore occlusions entirely and tend to lose track of objects that become temporarily hidden from view.

Recent advances in human stem cell-derived brain organoids promise to replicate critical molecular and cellular aspects of learning and memory and possibly aspects of cognition in vitro. Coining the term “organoid intelligence” (OI) to encompass these developments, we present a collaborative program to implement the vision of a multidisciplinary field of OI. This aims to establish OI as a form of genuine biological computing that harnesses brain organoids using scientific and bioengineering advances in an ethically responsible manner. Standardized, 3D, myelinated brain organoids can now be produced with high cell density and enriched levels of glial cells and gene expression critical for learning. Integrated microfluidic perfusion systems can support scalable and durable culturing, and spatiotemporal chemical signaling.

Forget about He Jiankui, the Chinese scientist who created gene-edited babies. Instead, when you think about gene editing you should think of Victoria Gray, the African-American woman who says she’s been cured of her sickle-cell disease symptoms.

This week in London, scientists are gathering for the Third International Summit on Human Genome Editing. It’s gene editing’s big event, where researchers get to awe the audience with their new ability to modify DNA—and ethicists get to worry about what it all means.

🇬🇧FREE WEBINAR🇮🇹: https://draronica.com/free-webinar/

In this Ask Me Anything interview, Prof. Matt Kaeberlein discusses the evidence (and lack thereof) behind popular anti-aging supplements and interventions. Starting from his current research on rapamycin for healthy longevity in dogs (The Dog Aging Project), he describes the promises and perils of anti-aging medicine and shares with us some tips on how to become better critical thinkers and protect us from hype and snake oil.

This interview is a must watch for everyone who wants to develop a critical stance toward the field of longevity research and balance enthusiasm with evidence.

I hope you enjoy this interview!

TIMESTAMPS
00:00 Introduction.
04:33 Definitions: Aging, lifespan, healthspan.
09:08 What is biohacking.
14:56 The Dog Aging project.
19:39 Rapamycin: Longevity effects in mice.
22:28 Can rapamycin impair muscle growth? Is it in contraindicated for people who want to build muscle mass?
27:09 Exercise, inhibition of mTor, and rationale for cycling rapamycin and exercise.
29:46 Getting around the growth vs. resilience tradeoff in longevity.
32:00 Epigenetic clocks: Hope vs. hype.
32:43 Best functional markers of longevity.
36:30 Sterile inflammation, auto-immunity, and immune senescence.
40:24 The best and worst longevity supplements for Matt Kaeberlein.
45:50 What longevity hacks Matt implements in his own life.
48:00 Lucia’s and Matt’s thoughts on calorie restriction for longevity.
50:30 How can people discriminate between science and sneak oil?

🐶 The Dog Aging project: https://dogagingproject.org/

Artificial Intelligence AI

🖤 Become an AI & Robots fan & get access to perks: https://www.youtube.com/channel/UCi-vwe-lm_tgxEdlxf690Aw.

Did you think that technology getting too advanced and wiping away humanity was something that happened only in movies? You might be shocked by what you find today.

Robots ‘will reach human intelligence by 2029 and life as we know it will end in 2045’.

This isn’t the prediction of a conspiracy theorist, a blind dead woman or an octopus but of Google’s chief of engineering, Ray Kurzweil.

Kurzweil has said that the work happening now ‘will change the nature of humanity itself’.

A team of researchers from Michigan State University’s College of Veterinary Medicine has made a discovery that may have implications for therapeutic gene editing strategies, cancer diagnostics and therapies and other advancements in biotechnology.

Kathy Meek, a professor in the College of Veterinary Medicine, and collaborators at Cambridge University and the National Institutes of Health have uncovered a previously unknown aspect of how DNA double-stranded breaks are repaired.

A large protein kinase called DNA-PK starts the DNA repair process; in their new report, two distinct DNA-PK protein complexes are characterized, each of which has a specific role in DNA repair that cannot be assumed by the other.

The substance can be administered via intravenous injection and holds the possibility of being used in the treatment of conditions such as heart attacks and traumatic brain injury, among others.

An innovative biomaterial has been developed that, when injected intravenously, reduces inflammation and stimulates cell and tissue repair. The efficacy of this biomaterial in treating heart attack-induced tissue damage was demonstrated through successful testing on both rodent and large animal models. The researchers also provided proof of concept, based on a rodent study, suggesting that the biomaterial may prove beneficial in the treatment of traumatic brain injury and pulmonary arterial hypertension.

“This biomaterial allows for treating damaged tissue from the inside out,” said Karen Christman, a professor of bioengineering at the University of California San Diego, and the lead researcher on the team that developed the material. “It’s a new approach to regenerative engineering.”

Engineers from UNSW Sydney have developed a miniature and flexible soft robotic arm which could be used to 3D print biomaterial directly onto organs inside a person’s body.

3D bioprinting is a process whereby biomedical parts are fabricated from so-called bioink to construct natural tissue-like structures.

Bioprinting is predominantly used for research purposes such as tissue engineering and in the development of new drugs — and normally requires the use of large 3D printing machines to produce cellular structures outside the living body.

Paper Advanced Sciences:

Advanced soft robotic system for in situ 3D bioprinting and endoscopic surgery.

https://onlinelibrary.wiley.com/doi/10.1002/advs.