Menu

Blog

Archive for the ‘bioengineering’ category: Page 43

Apr 29, 2023

Bold new therapy delivery method shows initial promise as treatment for Duchenne muscular dystrophy

Posted by in categories: bioengineering, biotech/medical

Doug Millay, Ph.D., a scientist with the Division of Molecular Cardiovascular Biology at Cincinnati Children’s has dedicated his career to revealing the most fundamental mechanisms of skeletal muscle development. He has been a leader in characterizing how two “fusogens” called Myomaker and Myomerger mediate the entry of stem cells into mature muscle cells to build the tissue that humans depend upon for movement, breathing, and survival.

Now, some of the basic discoveries made by Millay and colleagues are translating into a potential treatment for people living with Duchenne muscular dystrophy (DMD). Their latest research, published April 12, 2023, in the journal Cell, reveals that in mice, modified viruses, engineered with Myomaker and Myomerger, result in specific fusion with . These viruses can therefore be used as a vector to deliver a vital gene needed for that is mutated in people with DMD.

A key unknown prior to this work was whether proteins like Myomaker and Myomerger, which mainly function on cells, could even work on viruses. First author Sajedah Hindi, Ph.D., also with the Division of Molecular Cardiovascular Biology at Cincinnati Children’s and a leading member of the research team, took on the challenge to test this idea.

Apr 23, 2023

Hematopoietic Transfer of the Anti-Cancer and Lifespan-Extending Capabilities of A Genetically Engineered Blood System

Posted by in categories: bioengineering, biotech/medical, genetics, life extension

A causal relationship exists among the aging process, organ decay and dis-function, and the occurrence of various diseases including cancer. A genetically engineered mouse model, termed EklfK74R/K74R or Eklf (K74R), carrying mutation on the well-conserved sumoylation site of the hematopoietic transcription factor KLF1/ EKLF has been generated that possesses extended lifespan and healthy characteristics including cancer resistance. We show that the high anti-cancer capability of the Eklf (K74R) mice are gender-, age-and genetic background-independent. Significantly, the anti-cancer capability and extended lifespan characteristics of Eklf (K74R) mice could be transferred to wild-type mice via transplantation of their bone marrow mononuclear cells. Targeted/global gene expression profiling analysis has identified changes of the expression of specific proteins and cellular pathways in the leukocytes of the Eklf (K74R) that are in the directions of anti-cancer and/or anti-aging. This study demonstrates the feasibility of developing a novel hematopoietic/ blood system for long-term anti-cancer and, potentially, for anti-aging.

The authors have declared no competing interest.

Apr 23, 2023

Organoid Intelligence: Computing on the Brain

Posted by in categories: bioengineering, biotech/medical, robotics/AI

In parallel to recent developments in machine learning like GPT-4, a group of scientists has recently proposed the use of neural tissue itself, carefully grown to recreate the structures of the animal brain, as a computational substrate. After all, if AI is inspired by neurological systems, what better medium to do computing than an actual neurological system? Gathering developments from the fields of computer science, electrical engineering, neurobiology, electrophysiology, and pharmacology, the authors propose a new research initiative they call “organoid intelligence.”

OI is a collective effort to promote the use of brain organoids —tiny spherical masses of brain tissue grown from stem cells—for computation, drug research and as a model to study at a small scale how a complete brain may function. In other words, organoids provide an opportunity to better understand the brain, and OI aims to use that knowledge to develop neurobiological computational systems that learn from less data and with less energy than silicon hardware.

The development of organoids has been made possible by two bioengineering breakthroughs: induced pluripotent stem cells and 3D cell culturing techniques.

Apr 23, 2023

Artificial intelligence and machine learning are powering efforts to bioengineer new enzymes, expedite drug development and improve access to radiotherapy

Posted by in categories: bioengineering, biotech/medical, robotics/AI

Orion in March announced it has set out on a four-year project to build a cutting-edge ecosystem for pharmaceutical research in Finland.

Consisting of companies, universities and research institutes, the ecosystem will utilise artificial intelligence and machine learning in order to reduce the time required for studying and developing pharmaceutical products.

“Utilising data with the help of artificial intelligence is a competitive advantage for developing new innovative medicines because it expedites development and significantly increases the probability of success,” toldOuti Vaarala, director of innovative medicines at Orion.

Apr 22, 2023

This 753-Foot Megaship Aims to Be the First Eco-Conscious Luxury Residential Community on the High Seas

Posted by in category: bioengineering

If you’re a fan of life on the high seas, this new project will let you travel them year-round in luxe accommodations.

On Tuesday, private residential ship maker Storylines and Croatian shipyard Brodosplit announced they have signed a ship building contract to create what they’re calling the world’s first environmentally conscious residential ship. The 753-foot vessel, dubbed MV Narrative, has begun its engineering phase. The development’s retail value is estimated at $1.5 billion.

Apr 16, 2023

Explaining the Singularity

Posted by in categories: bioengineering, biological, nanotechnology, quantum physics, robotics/AI, singularity

The Singularity is a technological event horizon beyond which we cannot see – a moment in future history when exponential progress makes the impossible possible. This video discusses the concept of the Singularity, related technologies including AI, synthetic biology, cybernetics and quantum computing, and their potential implications.

My previous video “AI, Robots & the Future” is here:
https://www.youtube.com/watch?v=iaGIo_Viazs.

Continue reading “Explaining the Singularity” »

Apr 14, 2023

What are Cognitive Light Cones? (Michael Levin Interview)

Posted by in categories: bioengineering, biotech/medical, genetics, robotics/AI

Michael Levin’s 2019 paper “The Computational Boundary of a Self” is discussed. The main topics of conversation include Scale-Free Cognition, Surprise & Stress, and the Morphogenetic Field. Michael Levin is a scientist at Tufts University; his lab studies anatomical and behavioral decision-making at multiple scales of biological, artificial, and hybrid systems. He works at the intersection of developmental biology, artificial life, bioengineering, synthetic morphology, and cognitive science.

🚩The Computational Boundary of a Self: Developmental Bioelectricity Drives Multicellularity and Scale-Free Cognition (can read in browser or download as pdf)
https://www.frontiersin.org/articles/10.3389/fpsyg.2019.02688/full.

Continue reading “What are Cognitive Light Cones? (Michael Levin Interview)” »

Apr 14, 2023

CRISPR Breakthrough: Scientists Can Now Turn Genes On and Off at Whim

Posted by in categories: bioengineering, biotech/medical, genetics

The gene-editing system CRISPR-Cas9 which has revolutionized genetic engineering over the past decade involves cutting DNA strands which is a process that can be quite hard to control and can result in unwanted genetic changes. Now, thanks to researchers at the Massachusetts Institute of Technology and the University of California, San Francisco (UCSF), a new gene-editing technology called CRISPRoff can change that, according to a press release.

“Fast forward four years [from the initial grant], and CRISPRoff finally works as envisioned in a science fiction way,” says co-senior author Luke Gilbert. “It’s exciting to see it work so well in practice.”

Apr 13, 2023

Gene Editing Therapeutics Could Hit the Market in 2023

Posted by in categories: bioengineering, biotech/medical

Pictured: Illustration of CRISPR-Cas9 editing DNA / iStock, Artur Plawgo

Currently, there are no gene editing–based treatments on the market, but the technology continues its march toward potential FDA approval, with several products in mid-and late-stage trials. As these programs mature, 2023 could be a pivotal year for companies in the space. Here are some highlights to look forward to as the year progresses.

CRISPR Therapeutics/Vertex Pharmaceuticals.

Apr 13, 2023

Meet 10 Women Who Are Leading The Synthetic Biology Revolution

Posted by in categories: bioengineering, biological, biotech/medical, chemistry, computing, economics, sustainability

In the last decade, we have witnessed biology bring us some incredible products and technologies: from mushroom-based packaging to animal-free hotdogs and mRNA vaccines that helped curb a global pandemic. The power of synthetic biology to transform our world cannot be overstated: this industry is projected to contribute to as much as a third of the global economic output by 2030, or nearly $30 trillion, and could impact almost every area of our lives, from the food we eat to the medicine we put in our bodies.

The leaders of this unstoppable bio revolution – many of whom you can meet at the SynBioBeta conference in Oakland, CA, on May 23–25 – are bringing the future closer every day through their ambitious vision, long-range strategy, and proactive oversight. These ten powerful women are shaping our world as company leaders, biosecurity experts, policymakers, and philanthropists focused on charting a new course to a more sustainable, equitable, clean, and safe future.

As an early pioneer in the high-throughput synthesis and sequencing of DNA, Emily Leproust has dedicated her life to democratizing gene synthesis to catapult the growth of synthetic biology applications from medicine, food, agriculture, and industrial chemicals to DNA data storage. She was one of the co-founders of Twist Bioscience in 2013 and is still leading the expanding company as CEO. To say that Twist’s silicon platform was a game-changer for the industry is an understatement. And it is no surprise that Leproust was recently honored with the BIO Rosalind Franklin Award for her work in the biobased economy and biotech innovation.

Page 43 of 219First4041424344454647Last