Toggle light / dark theme

Site — http://goo.gl/oORnr
IMDB — http://goo.gl/0PQvB
Instagram — http://goo.gl/JiyAC
Twitter — http://goo.gl/Ne8ZE
LinkedIn — http://goo.gl/myBN0
Vimeo — http://goo.gl/c57k6
Genre: docudrama
Type: documentary
Year: 2011
Director: Misha Kostrov
Creative director: Eugene Sannikov
Producer: Victor Mirsky, Sergey Sozanovsky
Creative producer: Oksana Maidanskaya
Director of photography: Vladimir Kratinov
Scriptwriter: Nataliya Doilnitsyna
Аwards: Platinum Remi Award, WorldFest Houston 2013

The film tacks together two tales: a historical account of Tesla’s eventful life and his pioneering research into physics and bold experiments with electricity.

Suffering from a fatal malady as a child the future great physicist promised his parents that he would recover under the sole condition…if they allowed him to become an engineer. And he kept his promise. Never ending yearning for knowledge, research practice, creative endeavor, discoveries that have unfixed all established notions — that’s what was the characteristic of the great physicist. Nikola Tesla would always remain a scientist whose life was a sort of mystification rather than pure reality.

Read more

Austin’s (Texas) leading paper features features transhumanism, biohacking, and longevity near the bottom:


Yesterday began with a 7:30 a.m. call from Dr. Ben Carson for what I thought was a pretty good half hour interview about his new book, A More Perfect Union, his primer on the Constitution, which I read over the weekend.

I was pleased.

According to the most recent Fox News poll, Carson is one percentage point behind Trump. According to the most recent NBC/Wall Street Journal Poll, he is three points behind Trump. All within the margin of error.

Nature has had billions of years to perfect photosynthesis, which directly or indirectly supports virtually all life on Earth. In that time, the process has achieved almost 100 percent efficiency in transporting the energy of sunlight from receptors to reaction centers where it can be harnessed—a performance vastly better than even the best solar cells.

One way plants achieve this efficiency is by making use of the exotic effects of quantum mechanics—effects sometimes known as “quantum weirdness.” These effects, which include the ability of a particle to exist in more than one place at a time, have now been used by engineers at MIT to achieve a significant efficiency boost in a light-harvesting system.

Surprisingly, the MIT researchers achieved this new approach to solar energy not with high-tech materials or microchips—but by using genetically engineered viruses.

Read more

Madrid, Spain (Scicasts) — A novel way to count white blood cells without a blood test, simply by applying a small device on the fingertip, is being developed by a team of young bioengineers.

The technology, that combines an optical sensor with algorithms, has already three prototypes on the go and is specially designed to be used on chemotherapy patients, who could know their immune system levels in real time. It could also serve to detect serious infections.

A group of young bioengineers from various countries, including Spaniard Carlos Castro, is developing a portable device capable of counting white blood cells in real time, without requiring a blood test. The system includes an innovative optics sensor through the skin that can observe white cells as they flow past a miniature lens. This new device could be applied to improve the treatment of patients who are left immunosuppressed after chemotherapy treatments and to prevent sepsis.

Read more

Liz Parrish is the Founder and CEO of BioViva Sciences USA Inc. BioViva is committed to extending healthy lifespans using gene therapy. Liz is known as “the woman who wants to genetically engineer you,” she is a humanitarian, entrepreneur and innovator and a leading voice for genetic cures. As a strong proponent of progress and education for the advancement of gene therapy, she serves as a motivational speaker to the public at large for the life sciences. She is actively involved in international educational media outreach and sits on the board of the International Longevity Alliance (ILA). She is an affiliated member of the Complex Biological Systems Alliance (CBSA) whose mission is to further scientific understanding of biological complexity and the nature and origins of human disease. She is the founder of BioTrove Investments LLC and the BioTrove Podcasts which is committed to offering a meaningful way for people to learn about and fund research in regenerative medicine. She is also the Secretary of the American Longevity Alliance (ALA) a 501©(3) nonprofit trade association that brings together individuals, companies, and organizations who work in advancing the emerging field of cellular & regenerative medicine with the aim to get governments to consider aging a disease. I am not a medical doctor or scientist. I can not answer details of therapy. I would like to discuss my experience of creating BioViva, organizing the gene therapies, and then finally being able to administer it to the first human.

Read more

[From CNN]

Human ‘mini brains’ grown in labs may help solve cancer, autism, Alzheimer’s

mini_brain

  • Ohio State biomedical research team grows nearly complete human ‘mini brain’
  • Brain organoids can be used to learn more about diseases like cancer, Alzheimer’s and Parkinson’s
  • Brain organoids could yield autism breakthrough within 10 years, researcher says

| Video Source: CNN
Read the full story CNN

1. A heart of foam.
2. Artificial arteries.
3. Brain implants.
4. Robotic hand that can recognize objects by Feel.
5. Upside-Down Rover to explore Europa.


Welcome to #18 Avatar Technology Digest. Again, get ready for exciting news on Technology, Medical Cybernetics and Artificial Intelligence. Thank you for watching us. You are welcome to Subscribe, follow us in social media, leave your comments and join the conversation. And here are the top stories of the last week.

1) A heart of foam could replace your own. Existing artificial hearts have multiple moving parts, which increases the chance of failure, but this new device is just a single piece of material. Researchers inspired by soft robots have built a pumping artificial heart that could one day replace the real deal.
The team of Bioengineers at Cornell University build their robots out of a solid, plastic foam, which naturally has an interconnected network of tubes to let air flow – just as our muscles are permeated by blood vessels. A solid coating of plastic seals everything inside like a skin.

2) Researchers at QMUL have developed a way of assembling organic molecules into complex tubular tissue-like structures without the use of moulds or techniques like 3D printing. Self-assembling material can grow and change shape and one day could lead to artificial arteries.
The method uses solutions of peptide and protein molecules that, upon touching each other, self-assemble to form a dynamic tissue at the point at which they meet. As the material assembles itself it can be easily guided to grow into complex shapes.
This discovery could lead to the engineering of tissues like veins, arteries, or even the blood-brain barrier. The technique could also contribute to the creation of better implants, complex tissues, or more effective drug screening methods.

3) Neural Implant Enables Paralyzed ALS Patient to Type Six Words per Minute.
A massive collaboration of doctors and computer scientists gets one step closer to mind-controlled devices.
An eclectic team of researchers affiliated with BrainGate, a consortium of neuroscientists, engineers, computer scientists, and mathematicians, have published a study in Nature Medicine that profiles two subjects who control a cursor with their thoughts more deftly than previous systems allowed.
Earlier versions of the system allowed subjects to perform such tasks as drinking from a coffee thermos using a robotic arm, or playing simple games. The latest version brings finer control and ease of use. One participant was even able to type at a rate of six words a minute, using software originally developed to help people type type with eye movement.

4) Robots have many strong suits, but delicacy traditionally hasn’t been one of them. Rigid limbs and digits make it difficult for them to grasp, hold, and manipulate a range of everyday objects without dropping or crushing them. Now Soft robotic gripper can gently pick up and identify wide array of objects.
At a conference this month, researchers from Distributed Robotics Lab demonstrated a 3D-printed robotic hand made out of silicone rubber that can lift and handle objects as delicate as an egg and as thin as a compact disc.
Just as impressively, its three fingers have special sensors that can estimate the size and shape of an object accurately enough to identify it from a set of multiple items.

5) There’s a big ocean under the ice… NASA’s JPL team is working on a simple solution to get a sense of the deep ocean first: it’s working on the Buoyant Rover for Under-Ice Exploration. As you will see in the video, JPL tested it in choppy, methane-rich waters in Alaska.

TV Presenter: Olesya Yermakova @olesyayermakova.
Video: Vladimir Shlykov www.GetYourMedia.ru

Read more

As implants and bio-hacking gain popularity, could tweaking the body’s circuits become a mainstay in future medicine?

Bioelectronics offer everything from precise diabetes treatment to appetite reduction. In a world where most of us have a phone glued to our hand at all times, combining ‘wetware’ with hardware is starting to make real sense.

Read more

New research from Brown University details a relatively accessible method for making a working (though not thinking) sphere of central nervous system tissue.

If you need a working miniature brain — say for drug testing, to test neural tissue transplants, or to experiment with how stem cells work — a new paper describes how to build one with what the Brown University authors say is relative ease and low expense. The little balls of brain aren’t performing any cogitation, but they produce electrical signals and form their own neural connections — synapses — making them readily producible testbeds for neuroscience research, the authors said.

“We think of this as a way to have a better in vitro [lab] model that can maybe reduce animal use,” said graduate student Molly Boutin, co-lead author of the new paper in the journal Tissue Engineering: Part C. “A lot of the work that’s done right now is in two-dimensional culture, but this is an alternative that is much more relevant to the in vivo [living] scenario.”

Read more

Visionary Liz Parrish shares some of the remarkable ways that genetic therapies are helping humanity transcend disease, aging and physical limitations. We discuss some of the current applications of gene therapy, what we can reasonably expect given the rate of progress and some of the moral implications of this science. If you’re anything like us, you’ll be astounded to hear about this work; it can already make you stronger and faster, and it may help future generations live upwards of 400 years!

Click to download the episode directly (right click, then click save as) Subscribe to the podcast on iTunes. Subscribe to the podcast on Stitcher.

“Known as “the woman who wants to genetically engineer you,” Elizabeth Parrish is the CEO of BioViva USA Inc ™ she is a humanitarian, entrepreneur and innovator and a leading voice for genetic cures. As a strong proponent of progress and education for the advancement of gene therapy, she serves as a motivational speaker to the public at large for the life sciences. She is actively involved in international educational media outreach and sits on the board of the International Longevity Alliance (ILA). She is an affiliated member of the Complex Biological Systems Alliance (CBSA) whose mission is to further scientific understanding of biological complexity and the nature and origins of human disease. She is the founder of BioTrove Investments LLC and the BioTrove Podcasts which is committed to offering a meaningful way for people to learn about and fund research in regenerative medicine. She is also the Secretary of the American Longevity Alliance (ALA) a 501©(3) nonprofit trade association that brings together individuals, companies, and organizations who work in advancing the emerging field of cellular & regenerative medicine with the aim to get governments to consider aging a disease.” –Blurb taken from Liz’ LinkedIn Profile.

Read more