Toggle light / dark theme

This could have some truly profound implications for the treatment of all viruses, including HIV!


Researchers from Temple University have used the CRISPR/Cas9 gene editing tool to clear out the entire HIV-1 genome from a patient’s infected immune cells. It’s a remarkable achievement that could have profound implications for the treatment of AIDS and other retroviruses.

When we think about CRISPR/Cas9 we tend to think of it as a tool to eliminate heritable genetic diseases, or as a way to introduce new genes altogether. But as this new research shows, it also holds great promise as a means to eliminate viruses that have planted their nefarious genetic codes within host cells. This latest achievement now appears in Nature Scientific Reports.

Retroviruses, unlike regular run-of-the-mill viruses, insert copies of their genomes into host cells in order to replicate. Antiretroviral drugs have proven effective at controlling HIV after infection, but patients who stop taking these drugs suffer a quick relapse. Once treatment stops, the HIV reasserts itself, weakening the immune system, thus triggering the onset of acquired immune deficiency syndrome, or AIDS.

It sounds really obvious, but hospitals aren’t for healthy people. The world’s entire health system is really there to react once people get ill. If doctors are able to catch an illness at stage one that’s great, but if it reaches stage three or four there’s often not that much that can be done. So what if we could treat patients at stage zero and predict the likelihood of contracting diseases? We could then get treatment to people who need it much earlier and take preventative steps to avoid illness altogether.

Currently, when we think of monitoring in healthcare we’re usually referring to monitoring patients’ reactions to drugs or treatments, but this is changing. No amateur runner’s uniform is complete these days without a Fitbit or some kind of analytics tool to monitor progress, so the idea of monitoring the healthy is becoming ingrained in the public’s consciousness. But Fitbits only scrape the surface of what we can do. What if the data from fitness trackers could be combined with medical records, census data and the details of supermarket loyalty cards to predict the likelihood of contracting a particular disease?

With big data we can move from reacting to predicting, but how do we move beyond just making predictions; how do we prevent disease from occurring altogether? Up until now all of our monitoring technology has been located outside of the body, but nano-sized entities made of DNA could one day patrol the body, only acting when they come into contact with specific cells – cancer cells, for example. The technology that would turn tiny machines – roughly the size of a virus – into molecular delivery trucks that transport medication is already being worked on by bioengineers. If this kind of technology can be used to treat cancer, without needing to release toxic agents into the body, can the same technology be inserted into a healthy person and lie in wait for the opportunity to fight disease on its host’s behalf?

Read more

Making the most of the low light in the muddy rivers where it swims, the elephant nose fish survives by being able to spot predators amongst the muck with a uniquely shaped retina, the part of the eye that captures light. In a new study, researchers looked to the fish’s retinal structure to inform the design of a contact lens that can adjust its focus.

Imagine a that autofocuses within milliseconds. That could be life-changing for people with presbyopia, a stiffening of the eye’s that makes it difficult to focus on close objects. Presbyopia affects more than 1 billion people worldwide, half of whom do not have adequate correction, said the project’s leader, Hongrui Jiang, Ph.D., of the University of Wisconsin, Madison. And while glasses, conventional contact lenses and surgery provide some improvement, these options all involve the loss of contrast and sensitivity, as well as difficulty with night vision. Jiang’s idea is to design contacts that continuously adjust in concert with one’s own cornea and lens to recapture a person’s youthful vision.

The project, for which Jiang received a 2011 NIH Director’s New Innovator Award (an initiative of the NIH Common Fund) funded by the National Eye Institute, requires overcoming several engineering challenges. They include designing the lens, algorithm-driven sensors, and miniature electronic circuits that adjust the shape of the lens, plus creating a power source — all embedded within a soft, flexible material that fits over the eye.

Read more

CHAMPAIGN, Ill. — A new class of miniature biological robots, or bio-bots, has seen the light — and is following where the light shines.

The bio-bots are powered by muscle cells that have been genetically engineered to respond to light, giving researchers control over the bots’ motion, a key step toward their use in applications for health, sensing and the environment. Led by Rashid Bashir, the University of Illinois head of bioengineering, the researchers published their results in the Proceedings of the National Academy of Sciences.

“Light is a noninvasive way to control these machines,” Bashir said. “It gives us flexibility in the design and the motion. The bottom line of what we are trying to accomplish is the forward design of biological systems, and we think the light control is an important step toward that.”

Read more

SENS has kindly commented about MMTP and the impact our research should have on aging. We launch a fundraiser in April to test senolytics (ApoptoSENS) with a planned follow up to combine this with stem cell therapy (RepleniSENS). It is time to put the engineering approach to aging to the test!


Some drugs tested have been found to increase mouse lifespan such as Metformin and Rapamycin for example and are considered for human testing. Many more substances have never been tested and we do not know if they might extend healthy lifespan.

Read more

CRISPR may be revolutionary; however, it’s not nearly as easy as it’s made out to be. But thanks to this company, individuals can alter the source code of life without ever needing to enter a lab.

A new genome editing technique is allowing us to alter DNA—the source code of life—with unprecedented precision. It is known as CRISPR, and with it, we can target and change a gene from any cell of any species without interfering with any other genes. If that’s not enough, we are able to edit these genes at just a fraction of the cost of previous methods.

So not only is this technique remarkably precise, it’s also remarkably cheap.

Read more

It won’t be long now before cancer is nothing but a terrible, terrible memory.

Never soon enough, though.


Recent advances in an immune-cell cancer treatment called immunotherapy* (using engineered antibodies that can target specific molecules on cancer cells) are producing dramatic results for people with cancer, according to Stanley Riddell, MD, an immunotherapy researcher and oncologist at Seattle’s Fred Hutchinson Cancer Research Center.**

Riddell and his colleagues have refined new methods of engineering a patient’s own immune cells to better target and kill cancer cells while decreasing side effects. In laboratory and clinical trials, the researchers are seeing “dramatic responses” in patients with tumors that are resistant to conventional high-dose chemotherapy, “providing new hope for patients with many different kinds of malignancies,” Riddell said.

Read more