Toggle light / dark theme

Truthfully, it has been some time since Moore’s law, the propensity for processors to double in transistor count every two years, has been entirely accurate. The fundamental properties of silicon are beginning to limit development and will significantly curtail future performance gains, yet with 50 years and billions invested, it seems preposterous that any ‘beyond-silicon’ technology could power the computers of tomorrow. And yet, Nano might do just that, by harnessing its ability to be designed and built like a regular silicon wafer, while using carbon to net theoretical triple performance at one-third the power.

Nano began life much like all processors, a 150mm wafer with a pattern carved out of it by a regular chip fab. Dipped into a solution of carbon nanotubes bound together like microscopic spaghetti, it re-emerged with its semi-conductive carbon nanotubes stuck in the pattern of transistors and logic gates already etched on it. It then undergoes a process called ‘RINSE,’ removal of incubated nanotubes through selective exfoliation, by being coated with a polymer then dipped in a solvent. This has the effect of reducing the CNT layer to being just one tube, removing the large clumps of CNTs that stick together over 250 times more effectively than previous methods.

One of the challenges facing CNT processors has been difficulty in separating N-type and P-type transistors, which are “on” for 1 bit and “off” for 0 bit and the reverse, respectively. The difference is important for binary computing, and to perfect it, the researchers introduced ‘MIXED,’ metal interface engineering crossed with electrostatic doping. Occurring after RINSE, small platinum or titanium components are added to each transistor, then the wafer is coated in an oxide which acts as a sealant, improving performance. After that, Nano was just about done.

We asked three centenarians what their most valuable life lessons were, and also their regrets.

The conversations that followed were remarkable. They talked about the importance of family, people, relationships and love. Their view on life, as an elderly citizen with a lot of experience is truly an inspiration and motivation. Enjoy the video!

Click here to subscribe to LifeHunters: http://bit.ly/2gFMyln
http://www.lifehunters.com
https://www.facebook.com/Lifehunters

Executive producer: LifeHunters

A little bit of norovirus—the highly infectious microbe that causes about 20 million cases of food poisoning in the United States each year—goes a long way. Just 10 particles of the virus can cause illness in humans. A team of University of Arizona researchers has created a simple, portable and inexpensive method for detecting extremely low levels of norovirus.

Jeong-Yeol Yoon, a researcher in the Department of Biomedical Engineering; Soo Chung, a biosystems engineering doctoral student who works in Yoon’s Biosensors Lab; and Kelly A. Reynolds, Chair of the Department of Community, Environment and Policy in the Mel & Enid Zuckerman College of Public Health, led the project. The team published their results in ACS Omega, the official journal of the American Chemical Society, and Yoon is presenting the research at the ACS Fall 2019 National Meeting & Exposition in San Diego this week.

“Advances in rapid monitoring of human viruses in water are essential for protecting public health,” Reynolds said. “This rapid, low-cost water quality monitoring technology could be a transformational tool for reducing both local and global disease burdens.”