Menu

Blog

Archive for the ‘bioengineering’ category: Page 134

Jun 16, 2019

CRISPR used to build dual-core computers inside human cells

Posted by in categories: bioengineering, biotech/medical, computing, genetics

The CRISPR gene-editing system is usually known for helping scientists treat genetic diseases, but the technology has a whole range of possible uses in synthetic biology too. Now researchers at ETH Zurich have used CRISPR to build functional biocomputers inside human cells.

Jun 12, 2019

AI, Immunology, and Healthcare — Professor Shai Shen-Orr PhD., Associate Professor at Technion — Israel Institute of Technology, and Founder and Chief Scientist CytoReason — ideaXme — Ira Pastor

Posted by in categories: aging, big data, bioengineering, biotech/medical, business, disruptive technology, DNA, genetics, health, life extension

Jun 11, 2019

The World Is a Mess. We Need Fully Automated Luxury Communism

Posted by in categories: bioengineering, biotech/medical, food, space

Asteroid mining. Gene editing. Synthetic meat. We could provide for the needs of everyone, in style. It just takes some imagination.

Read more

Jun 10, 2019

18mml011_dna-barcode-illustration-horizontal-2mb.jpg

Posted by in categories: bioengineering, biotech/medical

Barcodes are used in a new way in the MAGESTIC platform, adding a new level of precision to CRISPR gene editing.

Download full image.

Read more

Jun 10, 2019

HIV-protective mutation may boost influenza death risk

Posted by in categories: bioengineering, biotech/medical, genetics

LMAO The babies died of the flu Keep making mistakes on the aleal borders and the organism dies of viral infections… This seems to be exactly the same result as a majority of the cloned animals over the last thirty years too. It is hard to get that puppy of your favorite dog to stick… Pitty really for the genetically engineered children who will mostly suffer and die before adulthood.


Gene targeted in the ‘CRISPR baby’ scandal might prove fatal, study finds. Nick carne reports.

Read more

Jun 7, 2019

CRISPR-associated transposons able to insert custom genes into DNA without cutting it

Posted by in categories: bioengineering, biotech/medical, genetics, health

A team of researchers affiliated with the Broad Institute of MIT and Harvard, MIT and the National Institutes of Health has found that CRISPR-associated transposons can be used to insert custom genes into DNA without cutting it. In their paper published in the journal Science, the group describes their new gene-editing technique and how well it worked when tested in a bacterial genome.

The CRISPR gene editing has made headlines in recent years due to its potential for treating hereditary diseases. Unfortunately, despite much research surrounding the technique, it is still not a viable option for use on human patients. This is because the technique is error-prone—when snipping strands of DNA, CRISPR sometimes cuts off-target DNA as well, leading to unintended and unpredictable consequences (and sometimes cancerous tumors). In this new effort, the researchers have found a way to use CRISPR in conjunction with another protein to edit a strand of DNA without cutting it—they are calling it CRISPR-associated transposase (CAST).

Prior research has shown that certain pieces of DNA called transposons are, for unknown reasons, able to reposition themselves in a genome spontaneously—for this reason, they have come to be known as jumping genes. Not long after they were discovered, researchers noted that they might be used for gene editing. This is what the researchers did in the new study. They associated a transposon called Tn7 with the Cas12 enzyme used with CRISPR to edit a section of a bacterial genome. In practice, CRISPR led the Tn7 transposon to the target location in the genome—at that point, the transposon inserted itself into the without cutting it.

Continue reading “CRISPR-associated transposons able to insert custom genes into DNA without cutting it” »

Jun 6, 2019

First-of-its-kind platform aims to rapidly advance prosthetics

Posted by in categories: bioengineering, biotech/medical, cyborgs, robotics/AI, transhumanism

A new open-source, artificially intelligent prosthetic leg designed by researchers at the University of Michigan and Shirley Ryan AbilityLab is now available to the scientific community.

The leg’s free-to-copy design and programming are intended to improve the quality of life of patients and accelerate by offering a unified platform to fragmented research efforts across the field of bionics.

Continue reading “First-of-its-kind platform aims to rapidly advance prosthetics” »

Jun 5, 2019

Professor Irena Cosic PhD. — RMIT — Australia — Electromagentic Resonant Recognition Model of Macromolecular Interactions — ideaXme — Ira Pastor

Posted by in categories: aging, bioengineering, biotech/medical, business, DNA, genetics, health, life extension, science, transhumanism

Jun 5, 2019

Creating Thymus Organoids Using Tissue Engineering

Posted by in categories: bioengineering, biotech/medical, life extension

Today, we wish to highlight a new open access publication in which the researchers take a novel approach to the regeneration of the thymus, a small but vitally important organ that is key to our immune system.

The thymus shrinks as we age

The thymus is one of the most important organs in the body, and it is where thymocytes produced in the bone marrow travel to become new T cells before being trained in the lymph nodes to become the defenders of the adaptive immune system. However, as we get older, the thymus increasingly turns to fat and starts to shrink, causing its ability to produce new T cells to fall dramatically. This process is known as thymic involution and actually begins shortly after puberty, so this is one aspect of aging that begins fairly early in life, although it is many decades later before its decline causes serious health issues.

Continue reading “Creating Thymus Organoids Using Tissue Engineering” »

Jun 5, 2019

Can Gene Editing Stop The Bird Flu? Here Is The Latest With Chickens

Posted by in categories: bioengineering, biotech/medical

This study shows how CRISPR gene editing can make chicken cells resistant to the avian influenza virus.

Read more