This article is part of our new series, Currents, which examines how rapid advances in technology are transforming our lives.
Imagine operating a computer by moving your hands in the air as Tony Stark does in “Iron Man.” Or using a smartphone to magnify an object as does the device that Harrison Ford’s character uses in “Blade Runner.” Or a next-generation video meeting where augmented reality glasses make it possible to view 3D avatars. Or a generation of autonomous vehicles capable of driving safely in city traffic.
These advances and a host of others on the horizon could happen because of metamaterials, making it possible to control beams of light with the same ease that computer chips control electricity.
Microsoft Mesh enables presence and shared experiences from anywhere – on any device – through mixed reality applications.
Mesh allows for connections with new depth and dimension. As digital intelligence comes to the real world, we’re now able to see, share, and collaborate on content that persists. This common understanding ignites ideas, sparks creativity, and forms powerful bonds.
AI plays an important role across our apps — from enabling AR effects, to helping keep bad content off our platforms and better supporting our communities through our COVID-19 Community Help hub. As AI-powered services become more present in everyday life, it’s becoming even more important to understand how AI systems may affect people around the world and how we can strive to ensure the best possible outcomes for everyone.
Several years ago, we created an interdisciplinary Responsible AI (RAI) team to help advance the emerging field of Responsible AI and spread the impact of such work throughout Facebook. The Fairness team is part of RAI, and works with product teams across the company to foster informed, context-specific decisions about how to measure and define fairness in AI-powered products.
All of which would be nice and handy, but clearly, privacy and ethics are going to be a big issue for people — particularly when a company like Facebook is behind it. Few people in the past would ever have lived a life so thoroughly examined, catalogued and analyzed by a third party. The opportunities for tailored advertising will be total, and so will the opportunities for bad-faith actors to abuse this treasure trove of minute detail about your life.
But this tech is coming down the barrel. It’s still a few years off, according to the FRL team. But as far as it is concerned, the technology and the experience are proven. They work, they’ll be awesome, and now it’s a matter of working out how to build them into a foolproof product for the mass market. So, why is FRL telling us about it now? Well, this could be the greatest leap in human-machine interaction since the touchscreen, and frankly Facebook doesn’t want to be seen to be making decisions about this kind of thing behind closed doors.
“I want to address why we’re sharing this research,” said Sean Keller, FRL Director of Research. “Today, we want to open up an important discussion with the public about how to build these technologies responsibly. The reality is that we can’t anticipate or solve all the ethical issues associated with this technology on our own. What we can do is recognize when the technology has advanced beyond what people know is possible and make sure that the information is shared openly. We want to be transparent about what we’re working on, so people can tell us their concerns about this technology.””
When augmented reality hits the market at full strength, putting digital overlays over the physical world through transparent glasses, it will intertwine itself deeper into the fabric of your life than any technology that’s come before it. AR devices will see the world through your eyes, constantly connected, always trying to figure out what you’re up to and looking for ways to make themselves useful.
Facebook is already leaps and bounds ahead of the VR game with its groundbreaking Oculus Quest 2 wireless headsets, and it’s got serious ambitions in the augmented reality space too. In an online “Road to AR glasses” roundtable for global media, the Facebook Reality Labs (FRL) team laid out some of the eye-popping next-gen AR technology it’s got up and running on the test bench. It also called on the public to get involved in the discussion around privacy and ethics, with these devices just a few scant years away from changing our world as completely as the smartphone did.
TL;DR: Last week, we kicked off a three-part series on the future of human-computer interaction (HCI). In the first post, we shared our 10-year vision of a contextually-aware, AI-powered interface for augmented reality (AR) glasses that can use the information you choose to share, to infer what you want to do, when you want to […].
Facebook is showing off its mind-reading wrist device and an augmented reality keyboard that it is working on as it prepares to release its smart glasses.
TOWARDS a METAMATERIALLY-BASED ANALOGUE SENSOR FOR TELESCOPE EYEPIECES jeremy batterson.
(NB: Those familiar with photography or telescopy can skip over the “elements of a system,” since they will already know this.)
In many telescopic applications, what is desired is not a more magnified image, but a brighter image. Some astronomical objects, such as the Andromeda galaxy or famous nebulae like M42 are very large in apparent size, but very faint. If the human eye could see the Andromeda galaxy, it would appear four times wider than the Moon. The great Orion nebula M42 is twice the apparent diameter of the Moon.
Astrophotographers have an advantage over visual astronomers in that their digital sensors can be wider than the human pupil, and thus can accommodate larger exit pupils for brighter images.
The common three-factor determination of brightness of a photograph (aperture, ISO, and shutter speed) should actually be five-factor, including what is often left out since it had already been inherently designed into a system: magnification and exit pupil. The common factors are.
Elements of a system: 1 )Aperture. As aperture increases, the light gain of a system increases by the square of increased aperture, so a 2-inch diameter entrance pupil aperture has four times gain over a 1-inch diameter entrance pupil and so on.