Toggle light / dark theme

The universe works for us because of deep physical laws. But if the values of these laws change much, then all we see and know could not exist. If small changes to the laws of physics would make life impossible, does fine-tuning require an explanation? Featuring interviews with Bernard Carr, David Deutsch, Richard Swinburne, Rodney Holder, and Christopher Isham.

Season 12, Episode 8 — #CloserToTruth.

▶Register for free at CTT.com for subscriber-only exclusives: http://bit.ly/2GXmFsP

Closer To Truth host Robert Lawrence Kuhn takes viewers on an intriguing global journey into cutting-edge labs, magnificent libraries, hidden gardens, and revered sanctuaries in order to discover state-of-the-art ideas and make them real and relevant.

An international team of scientists announced on Wednesday that they have discovered two new “super-Earth” planets just 100 light-years away. Both of them are significantly larger than our own planet — and one of them may even be suitable for life.

Super-Earths are a unique class of exoplanet in the solar system that are more massive than our planet but lighter than the ice giants, according to NASA. They are made by some combination of gas and rock and can get up to 10 times the size of Earth’s mass.

The findings, discovered with NASA’s Transiting Exoplanet Survey Satellite and the University of Liège’s Search for Habitable Planets Eclipsing Ultra-Cool Stars (SPECULOOS), will be published in the journal Astronomy and Astrophysics.

Work is afoot to build the necessary instruments to do so.

ETH Zurich, the Swiss federal institute, recently opened its new Center for the Origin and Prevalence of Life, an interdisciplinary institute to analyze the current and future observations of the Earth and the universe. During the opening ceremony, astrophysicist Sasha Quanz said that we might be able to detect the presence of life outside our solar system in the next 25 years, Space.com.


IStock/oorka.

The claim might sound too ambitious, especially when, after years of work, we are still not sure if planets inside the solar system can support life. However, Quanz recollected that it was only the year 1995 that we had discovered the first planet outside our solar system. In less than three decades, we now have a potential list of 100 billion exoplanets to be discovered in the Milky Way galaxy alone.

This places Drake in the company of towering physicists with equations named after them, including James Clerk Maxwell and Erwin Schrödinger. Unlike those, Drake’s equation does not encapsulate a law of nature. Instead, it combines some poorly known probabilities into an informed estimate.

Whatever reasonable values you feed into the equation (see image below), it is hard to avoid the conclusion that we shouldn’t be alone in the galaxy. Drake remained a proponent and a supporter of the search for extraterrestrial life throughout his days, but has his equation taught us anything?

Drake’s equation may look complicated, but its principles are rather simple. It states that in a galaxy as old as ours, the number of civilizations that are detectable by virtue of them broadcasting their presence must equate to the rate at which they arise, multiplied by their average lifetime.

SUBSCRIBE to “Science Time”: https://www.youtube.com/sciencetime24

Why does our universe appear so exquisitely tuned to create the conditions necessary for life? This is a question that has troubled cosmologists and physicists for decades.

Brian Greene explains how the mind-boggling idea of a multiverse may hold the answer to the puzzle. According to Greene, if there are infinitely many universes, it shouldn’t be too surprising that one ended up with the right conditions for life.

We may seriously underestimate life’s natural tendency to behave in a particular way under different laws, constants, and boundary conditions because we are biased to assume that all possible kinds of life will resemble life as we know it.

It’s difficult to describe the state of the universe’s affairs back when the whole of everything was compressed to a size slightly smaller than the period at the end of this sentence — on account that the concepts of time and space literally didn’t yet apply. But that challenge hasn’t stopped pioneering theoretical astrophysicist, Dr. Laura Mersini-Houghton, from seeking knowledge at the edge of the known universe and beyond. In her new book, Before the Big Bang, Mersini-Houghton recounts her early life in communist Albania, her career as she rose to prominence in the male-dominated field of astrophysics and discusses her research into the multiverse which could fundamentally rewrite our understanding of reality.

Excerpted from Before The Big Bang: The Origin of the Universe and What Lies Beyond by Laura Mersini-Houghton. Published by Mariner Books. Copyright © 2022 by Laura Mersini-Houghton. All rights reserved.

Scientific investigations of problems like the creation of the universe, which we can neither observe nor reproduce and test in a lab, are similar to detective work in that they rely on intuition as well as evidence. Like a detective, as pieces of the puzzle start falling into place, researchers can intuitively sense the answer is close. This was the feeling I had as Rich and I tried to figure out how we could test our theory about the multiverse. Rationally, it seemed like a long shot, but intuitively, it seemed achievable.

Start listening with a 30-day Audible trial and your first audiobook is free. Visit http://www.audible.com/isaac or text “isaac” to 500–500.
The idea that some mimic might steal your identity and replace you, or takeover your mind, is terrifying. But could we encounter aliens that were able to do this?

Visit our Website: http://www.isaacarthur.net.
Support us on Patreon: https://www.patreon.com/IsaacArthur.
Support us on Subscribestar: https://www.subscribestar.com/isaac-arthur.
Facebook Group: https://www.facebook.com/groups/1583992725237264/
Reddit: https://www.reddit.com/r/IsaacArthur/
Twitter: https://twitter.com/Isaac_A_Arthur on Twitter and RT our future content.
SFIA Discord Server: https://discord.gg/53GAShE

Listen or Download the audio of this episode from Soundcloud: Episode’s Audio-only version: https://soundcloud.com/isaac-arthur-148927746/alien-impostors-doppelgangers.
Episode’s Narration-only version: https://soundcloud.com/isaac-arthur-148927746/alien-impostor…ation-only.

Credits:

Drake’s equation may look complicated, but its principles are really rather simple. It states that, in a galaxy as old as ours, the number of civilizations that are detectable by virtue of them broadcasting their presence must equate to the rate at which they arise, multiplied by their average lifetime.

Putting a value on the rate at which civilizations occur might seem to be guesswork, but Drake realized that it can be broken down into more tractable components.

He stated that the total rate is equal to the rate at which suitable stars are formed, multiplied by the fraction of those stars that have planets. This is then multiplied by the number of planets that are capable of bearing life per system, times the fraction of those planets where life gets started, multiplied by the fraction of those where life becomes intelligent, times the fraction of those that broadcast their presence.