Toggle light / dark theme

Where did Earth’s water come from? Not melted meteorites, according to scientists

Water makes up 71% of Earth’s surface, but no one knows how or when such massive quantities of water arrived on Earth.

A new study published in the journal Nature brings scientists one step closer to answering that question. Led by University of Maryland Assistant Professor of Geology Megan Newcombe, researchers analyzed melted meteorites that had been floating around in space since the ’s formation 4 1/2 billion years ago. They found that these meteorites had extremely low content—in fact, they were among the driest extraterrestrial materials ever measured.

These results, which let researchers rule them out as the primary source of Earth’s water, could have important implications for the search for water—and life—on other planets. It also helps researchers understand the unlikely conditions that aligned to make Earth a habitable planet.

The multiverse: Our universe is suspiciously unlikely to exist—unless it is one of many, says physicist

It’s easy to envisage other universes, governed by slightly different laws of physics, in which no intelligent life, nor indeed any kind of organized complex systems, could arise. Should we therefore be surprised that a universe exists in which we were able to emerge?

That’s a question physicists including me have tried to answer for decades. But it is proving difficult. Although we can confidently trace cosmic history back to one second after the Big Bang, what happened before is harder to gauge. Our accelerators simply can’t produce enough energy to replicate the that prevailed in the first nanosecond.

But we expect that it’s in that first tiny fraction of a second that the key features of our universe were imprinted.

Fundamental constants: Is the universe fine-tuned for life?

Imagine a universe with extremely strong gravity. Stars would be able to form from very little material. They would be smaller than in our universe and live for a much shorter amount of time. But could life evolve there? It took human life billions of years to evolve on Earth under the pleasantly warm rays from the Sun after all.

Now imagine a with extremely weak gravity. Its matter would struggle to clump together to form stars, planets and—ultimately—living beings. It seems we are pretty lucky to have gravity that is just right for life in our universe.

This isn’t just the case for gravity. The values of many forces and in the universe, represented by some 30 so-called fundamental constants, all seem to line up perfectly to enable the evolution of intelligent life. But there’s no theory explaining what values the constants should have—we just have to measure them and plug their numbers into our equations to accurately describe the cosmos.

Is the universe fine-tuned for life?

For decades, various physicists have theorized that even the slightest changes in the fundamental laws of nature would make it impossible for life to exist. This idea, also known as the “fine-tuned universe” argument, suggests that the occurrence of life in the universe is very sensitive to the values of certain fundamental physics. Alter any of these values (as the logic goes), and life would not exist, meaning we must be very fortunate to be here.

But can this really be the case, or is it possible that life can emerge under different physical constants, and we just don’t know it? This question was recently tackled by Luke A. Barnes, a postdoctoral researcher at the Sidney Institute for Astronomy (SIA) in Australia. In his book, “A Fortunate Universe: Life in a Finely Tuned Cosmos,” he and Sydney astrophysics professor Geraint F. Lewis argued that a fine-tuned universe makes sense from a standpoint.

The authors also summarized these arguments in an invited contribution paper, which appeared in the Routledge Companion to Philosophy of Physics (1st ed.) In this paper, titled “The Fine-Tuning of the Universe for Life,” Barnes explains how “fine-tuning” consists of explaining observations by employing a “suspiciously precise assumption.” This, he argues, has been symptomatic of incomplete theories throughout history and is a common feature of modern cosmology and .

Is the ‘fine-tuned universe’ an illusion?

For decades physicists have been perplexed about why our cosmos appears to have been precisely tuned to foster intelligent life. It is widely thought that if the values of certain physical parameters, such as the masses of elementary particles, were tweaked, even slightly, it would have prevented the formation of the components necessary for life in the universe—including planets, stars, and galaxies. But recent studies, detailed in a new report by the Foundational Questions Institute, FQXi, propose that intelligent life could have evolved under drastically different physical conditions. The claim undermines a major argument in support of the existence of a multiverse of parallel universes.

“The tuning required for some of these physical parameters to give rise to life turns out to be less precise than the tuning needed to capture a station on your radio, according to new calculations,” says Miriam Frankel, who authored the FQXi report, which was produced with support from the John Templeton Foundation. “If true, the apparent fine tuning may be an illusion,” Frankel adds.

Over the last few decades, the subject of fine tuning has attracted some of the sharpest minds in physics. By probing the ’s physical laws and precisely pinning down the values of physical constants—such as the masses of elementary particles and the strengths of forces—physicists have discovered that surprisingly small variations in these values would have rendered the universe lifeless. This led to a puzzle: why are physical conditions seemingly tailored towards human existence?

How DEAD SPACE Solves the Fermi Paradox

In a universe with more than a hundred billion billion planets, why have we only found life on one? DEAD SPACE offers a terrifying reason why: gigantic “Brethren Moons” made of meat with an unrelenting hunger for biomass.

💪 JOIN [THE FACILITY] for members-only live streams, behind-the-scenes posts, and the official Discord: https://www.patreon.com/kylehill.

👕 NEW MERCH DROP OUT NOW! https://shop.kylehill.net.

🎥 SUB TO THE GAMING CHANNEL: https://www.youtube.com/channel/UCfTNPE8mXGBZPC1nfVtOJTw.

✅ MANDATORY LIKE, SUBSCRIBE, AND TURN ON NOTIFICATIONS

📲 FOLLOW ME ON SOCIETY-RUINING SOCIAL MEDIA:

Where did Earth’s water come from? Not these meteorites, finds new study

Contrary to common assumption, not all meteorites from the outer solar system contain a lot of water.

Scientists are one step closer to figuring out where Earth’s vast quantities of water come from after disqualifying a class of meteorites drifting around in space since the solar system’s birth 4 1/2 billion years ago, according to a new study published in Nature.

Where did Earth’s water come from?


Kirstypargeter/iStock.

The study may have significant implications for the quest for liquid water and possibly even life on distant planets. It might also aid in understanding the extraordinary circumstances that allowed Earth to become a planet that supports life.

Nickelback Peptide Molecule Could Have Fostered Life on Earth; Substance May Serve as a Clue in the Search for Extraterrestrial Intelligence

Recent research reveals that a peptide called “Nickelback” may have played a huge role in kick-starting life on earth. The substance may also serve as a clue in the long-standing search for extraterrestrial intelligence.

Nickelback Peptide Molecule

A research team from Rutgers University and the City College of New York was able to pinpoint a simple peptide protein called nickelback. While it mirrors the name of a famous Canadian rock band, the name of the peptide refers to the backbone of the protein, which consists of two atoms of nitrogen linked to a nickel atom pair and an amino acid chain.

What If We Could Shrink To PLANCK LENGTH? | Unveiled

What if we went BEYOND the atom?? Join us, and find out!

Subscribe for more ► https://wmojo.com/unveiled-subscribe.

In this video, Unveiled takes a closer look at the Planck length — the smallest length imaginable in physics! What would happen if HUMAN BEINGS were this incredibly small? What would reality look like? And how would we understand life, the universe, and everything?

This is Unveiled, giving you incredible answers to extraordinary questions!

Find more amazing videos for your curiosity here:
Quantum Theory PROVES You Never Die — https://youtu.be/78onGajtyZw.
Everyday Life in a Type II Civilization — https://youtu.be/o_R064hEtQI

0:00 Intro.

/* */